K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:
ĐKXĐ: $0\leq x\leq 1$

PT $\Leftrightarrow \sqrt{x+\sqrt{1-x}}=1-\sqrt{x}$

$\Rightarrow x+\sqrt{1-x}=(1-\sqrt{x})^2=x+1-2\sqrt{x}$

$\Leftrightarrow 2\sqrt{x}+\sqrt{1-x}-1=0$
$\Leftrightarrow 2\sqrt{x}+\frac{-x}{\sqrt{1-x}+1}=0$

$\Leftrightarrow \sqrt{x}(2-\frac{\sqrt{x}}{\sqrt{1-x}+1})=0$

$\Rightarrow x=0$ hoặc $2-\frac{\sqrt{x}}{\sqrt{1-x}+1}=0$

Nếu $2-\frac{\sqrt{x}}{\sqrt{1-x}+1}=0$

$\Rightarrow 2\sqrt{1-x}+2=\sqrt{x}$. Điều này vô lý vì $\sqrt{x}\leq 1$ với mọi $0\leq x\leq 1$ trong khi $2\sqrt{1-x}+2\geq 2$

Vậy $x=0$ là nghiệm duy nhất.

3 tháng 9 2023

Kiểu dạng bài này là thường dưới căn cùng phép tính để đặt ẩn nên mình nghĩ là \(\sqrt{x+2\sqrt{x-1}}\) ...... mới đúng, còn nếu không phải thì bảo mình nhé và cách làm thì nó cũng giống cách mình làm thôi: )

ĐK: \(x\ge1\)

Đặt \(\sqrt{x-1}=t\left(t\ge0\right)\Rightarrow x=t^2+1\)

PT trở thành:

\(\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=t+8\\ \Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=t+8\\ \Leftrightarrow\left|t+1\right|+\left|t-1\right|=t+8\left(1\right)\)

Với \(0\le t< 1\) có:

(1) \(\Leftrightarrow t+1+1-t-t-8=0\) 

\(\Leftrightarrow-6-t=0\\ \Leftrightarrow t=-6\left(loại\right)\)

Với \(t\ge1\) có:

(1) \(\Leftrightarrow t+1+t-1-t-8=0\)

\(\Leftrightarrow t-8=0\\ \Leftrightarrow t=8\left(nhận\right)\)

\(\Rightarrow x=t^2+1=8^2+1=64+1=65\)

Vậy nghiệm của PT là `x=65`

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

23 tháng 7 2023

\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\) (ĐK: \(x\ge0,x\ne1\))

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(\Leftrightarrow x-\sqrt{x}=x-2\sqrt{x}+\sqrt{x}-2\)

\(\Leftrightarrow x-\sqrt{x}=x-\sqrt{x}-2\)

\(\Leftrightarrow x-x=\sqrt{x}-\sqrt{x}-2\)

\(\Leftrightarrow0=-2\) (vô lý)

⇒ Phương trình vô nghiệm

23 tháng 7 2023

\(đk:x\ge0;x\ne1\)

\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ \Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\\ \Rightarrow x-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}\\ \Rightarrow-\sqrt{x}-2+\sqrt{x}=0\\ \Rightarrow-2=0\left(voli\right)\)

Vậy phương trình vô nghiệm

20 tháng 8 2021

Từ pt suy ra \(x\ge0\).

PT \(\Leftrightarrow\sqrt{2x-2\sqrt{2x-1}}+\sqrt{2x+2\sqrt{2x-1}}=2x\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|+\left|\sqrt{2x-1}+1\right|=2x\). (*)

+) \(\sqrt{2x-1}-1\ge0\Leftrightarrow x\ge1\): Khi đó (*) tương đương \(2\sqrt{2x-1}=2x\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\) (thoả mãn)

+) \(\sqrt{2x-1}-1< 0\Leftrightarrow x< 1\): Khi đó (*) tương đương \(2=2x\Leftrightarrow x=1\), vô lí.

Vậy x = 1