Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: \(x\geq \frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=(a-b)(a+b)\)
\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)
Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)
\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)
Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)
Vậy........
Lời giải:
ĐKXĐ: \(x\geq \frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=(a-b)(a+b)\)
\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)
Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\)\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)
\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)
Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)
Vậy........
a) \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
\(pt\Leftrightarrow\sqrt{-x^2+2x+1+1}+\sqrt{-x^2-6x-9+1}=1+\sqrt{3}\)
\(\Leftrightarrow\sqrt{-\left(x-1\right)^2+1}+\sqrt{-\left(x+3\right)^2+1}=1+\sqrt{3}\)
Dễ thấy: \(VT\le2< 1+\sqrt{3}=VP\) (vô nghiệm)
b)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
\(pt\Leftrightarrow\sqrt{9x^2-6x+1+1}+\sqrt{45x^2-30x+5+4}=\sqrt{-9x^2+6x-1+9}\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{-\left(3x-1\right)^2+9}\)
Dễ thấy: \(VT\ge1+\sqrt{4}=3=VP\)
Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)
Bài 2 giải như sau (sau khi tác giả đã sửa): Điều kiện \(x,y>0.\)
Từ hệ ta suy ra \(1+\frac{3}{x+3y}=\frac{2}{\sqrt{x}},1-\frac{3}{x+3y}=\frac{4\sqrt{2}}{\sqrt{7y}}.\) Cộng và trừ hai phương trình, chia cả hai vế cho 2, ta sẽ được 2 phương trình \(1=\frac{1}{\sqrt{x}}+\frac{2\sqrt{2}}{\sqrt{7y}},\frac{3}{x+3y}=\frac{1}{\sqrt{x}}-\frac{2\sqrt{2}}{\sqrt{7y}}.\) Nhân hai phương trình với nhau, vế theo vế, ta được
\(\frac{3}{x+3y}=\frac{1}{x}-\frac{8}{7y}\to21xy=\left(x+3y\right)\left(7y-8x\right)\to21y^2-38xy-8x^2=0\to x=\frac{y}{2},x=-\frac{21}{4}y.\)
Đến đây ta được y=2x (trường hợp kia loại). Từ đó thế vào ta được \(1+\frac{3}{7x}=\frac{2}{\sqrt{x}}\to7x-14\sqrt{x}+3=0\to\sqrt{x}=\frac{7\pm2\sqrt{7}}{2}\to...\)
a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)
Bình phương 2 vế:
\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)
\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=-1;x=-5\)
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)
Phương trình trở thành:
\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)
a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)
\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)
vậy \(S=\left\{-1;-2;-5\right\}\)
Câu 1:
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-2}-\dfrac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0\)
=>\(\dfrac{5}{6}\sqrt{x-2}=5\)
=>căn x-2=5:5/6=6
=>x-2=36
=>x=38