K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019
😴😴😴😴😴😴😴
13 tháng 5 2019

Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được

\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)

Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc

\(2y^2+x^2y+x+3x^2-3xy=0\)

\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)

Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x

Ta có \(\Delta=-8y^3-15y^2-6y+1\)

Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)

mà y nguyên dương => y thuộc rỗng

=> Pt đã cho ko có nghiệm nguyên dương

17 tháng 11 2018

\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)

\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)

17 tháng 11 2018

2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)

TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)

TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)

TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)

Vậy......

16 tháng 9 2017

đặt x+y=a

xy=b

ntc a-2

16 tháng 9 2017

chụp cho tớ 20 bài bđt đi chi

30 tháng 4

Dùng định lý kẹp nhé

có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0

<=> x3 + 2x2 + 3x + 1 > x3 (1)

có x2 >= 0

<=> x+ 3x2 + 3x + 1 >= x3 + 2x2 + 3x + 1 (2)

Từ (1) và (2) => x3 + 2x2 + 3x + 1 = x+ 3x2 + 3x + 1

<=> x = 0

Thay vào biểu thức được y = -3

Vậy nghiệm nguyên của phương trình là (x;y) = (0;-3)

30 tháng 4

Cái phần "

có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0

<=> x3 + 2x2 + 3x + 1 > x3 (1)

" bị sai

đổi thành 5x2+2>0 <=> x3 + 2x2 + 3x + 1 > (x-1)3

thử thêm với trường hợp x3 + 2x2 + 3x + 1 = x3 được x =  -1 => y = -1

Vậy nghiêm nguyên của phương trình là (x;y) = (0;-3) ; (-1;-1)

\(PT\Leftrightarrow x^3+2x^2+3x+2=y^3\)

Với  x thuộc đoạn {-1,1} ta có

\(x^3< x^3+2x^2+3x+2< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)(vô lí)

\(\Rightarrow x\in[-1;1]\)

\(\Rightarrow x\in\left\{-1,0,1\right\}\)

Với x=-1=> y=0(tm)

Với x=0=>\(y=\sqrt[3]{2}\left(ktm\right)\)

Với x=1=>y=2(tm)

Vậy...........

21 tháng 11 2022

Bài 1:

Đặt 2x+1=a

Theo đề, ta có: \(\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=3\)

=>3a^2(a+1)^2=a^2+2a+1+a^2

=>3a^2(a^2+2a+1)-2a^2-2a-1=0

=>3a^4+6a^3+a^2-2a-1=0

=>(a^2+a-1)(3a^2+3a+1)=0

=>\(a\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)

=>\(2x+1\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)

=>\(2x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)

hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{4};\dfrac{-3-\sqrt{5}}{4}\right\}\)