Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ĐK: x≥-1
Đặt \(t=\sqrt{x^2+5x+4}\left(t\ge0\right)\)
⇒ \(t^2+t-6=0\)
\(\Leftrightarrow\left(t+3\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-3\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+5x+4}=2\)
\(\Leftrightarrow x^2+5x+4=4\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-5\left(loại\right)\end{matrix}\right.\)
b,ĐK: \(0\le x\le2\)
Ta có: \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
\(\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\) (1)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\)
\(\Rightarrow\left(1\right)\Leftrightarrow-t^2+10-3t=0\)
\(\Leftrightarrow\left(t+5\right)\left(2-t\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-5\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(loại\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
ĐKXĐ: bla bla bla
\(3x\left(x-2\right)\sqrt{3x-1}=2\left(x^3-5x^2+7x-2\right)\)
\(\Leftrightarrow3x\left(x-2\right)\sqrt{3x-1}=2\left(x-2\right)\left(x^2-3x+1\right)\)
TH1: \(x=2\)
TH2: \(3x\sqrt{3x-1}=2\left(x^2-3x+1\right)\)
Đặt \(\sqrt{3x-1}=t\ge0\)
\(\Rightarrow3tx=2\left(x^2-t^2\right)\)
\(\Leftrightarrow2x^2-3tx-2t^2=0\)
\(\Leftrightarrow\left(2x+t\right)\left(x-2t\right)=0\)
\(\Rightarrow x=2t\)
\(\Leftrightarrow x=2\sqrt{3x-1}\)
\(\Leftrightarrow x^2=4\left(3x-1\right)\)
\(\Leftrightarrow x^2-12x+4=0\)
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1