K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Ta có: \(\frac{x-1}{2012}+\frac{x-2}{2011}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+....+\frac{x-2012}{1}-1=2012-2012\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2011}+....+1\right)=0\)

Vì \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\ne0\)

\(\Rightarrow x+2013=0\)

\(\Rightarrow x=2013\)

Vậy x = 2013

4 tháng 2 2018

PT đã cho tương đương với:

      \(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2010=2012\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)

\(\Leftrightarrow x=2013\)

7 tháng 1 2018

Phương trình đã cho tương đương với :

\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2012=2012\)

\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)

Tìm x theo như toán lớp 6 nha

\(x-2013=0\)

\(\Leftrightarrow\)\(x=2013\)

7 tháng 1 2018

ta có pt 

<=>\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1=0\)

<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)

^_^

12 tháng 2 2019

\(\Leftrightarrow\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+....+1\right)=0\)

\(\Leftrightarrow x-2013=0\)(because 1/2012 +1/2011+...+1 luôn lớn hơn 0

\(\Leftrightarrow x=2013\)

Vậy ........

5 tháng 2 2018

Ta có phương trình : 

\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+....+\frac{x-2012}{1}=2012\)

Ta thấy phương trình đã cho tương ứng với phương trình : 

\(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)+2012=2012\)

\(\Rightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Rightarrow\left(x-2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+....+1\right)=0\)

Mặt khác \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\ne0\)

Do đó \(\Rightarrow x-2013=0\Rightarrow x=2013\)

Do vậy \(x=2013\)thoả mãn phương trình ban đầu 

5 tháng 2 2018

\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2000}+.....+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow\frac{x-1}{2012}+\frac{x-2}{2011}+........+\frac{x-2012}{1}-2012=0\)

\(\Leftrightarrow\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+......+\left(\frac{x-2012}{1}-1\right)=0\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+......+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+.....+1\right)=0\)

Mà \(\frac{1}{2012}+\frac{1}{2011}+....+1\ne0\)

Vậy ...

\(\Leftrightarrow x=2013\)

\(\Leftrightarrow x-2013=0\)

14 tháng 3 2019

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

tự làm nốt~

14 tháng 3 2019

kudo shinichi làm sai ở chỗ:

\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé

11 tháng 3 2019

\(\frac{x+1}{2012}+\frac{x+2}{2011}=\frac{x+3}{2010}+\frac{x+4}{2009}\)

\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)

\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2011}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)

\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\Leftrightarrow x=-2013\)

11 tháng 3 2019

\(\frac{x+1}{2012}+\frac{X+2}{2011}=\frac{X+3}{2010}+\frac{X+4}{2009}.\)

\(\Leftrightarrow\frac{X+1}{2012}+\frac{X+2}{2011}+2=\frac{X+3}{2010}+\frac{X+4}{2009}+2\)

\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)

\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2012}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)

\(\Leftrightarrow\left(x+2013\right).\left\{\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right\}=0\)

Mà \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}>0\)

\(\Leftrightarrow x+2013=0\)

\(\Leftrightarrow x=-2013\)

KL ; PT có Nghiệm \(S=\left\{-2013\right\}\)

11 tháng 2 2020
https://i.imgur.com/KDgoiE0.jpg
7 tháng 3 2017

\(\frac{x-2}{2012}+\frac{x-3}{2011}+\frac{x-4}{2010}+\frac{x-2029}{5}=0\)

\(\Leftrightarrow\frac{x-2}{2012}-1+\frac{x-3}{2011}-1+\frac{x-4}{2010}-1+\frac{x-2029}{5}+3=0\)

\(\Leftrightarrow\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}+\frac{x-2014}{5}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow x-2014=0\).Do \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\ne0\)

\(\Leftrightarrow x=2014\)

27 tháng 2 2017

\(\Leftrightarrow\frac{x-3}{2011}-1+\frac{x-2}{2012}-1=\frac{x-2012}{2}-1+\frac{x-2011}{3}-1\)

\(\Leftrightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}=\frac{x-2014}{2}+\frac{x-2014}{3}\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow x=2014\)