Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5,\(cos^2\frac{\pi}{24}\left(1-cos^2\frac{\pi}{24}\right)=cos^2\frac{\pi}{24}\left(sin^2\frac{\pi}{24}+cos^2\frac{\pi}{24}-cos^2\frac{\pi}{24}\right)=cos^2\frac{\pi}{24}.sin^2\frac{\pi}{24}\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi
mình ghi đáp án cho cái lượng giác này thui nhé
\(=\frac{3}{2}\)
A=sin2x+sin2x\(\left(\frac{2\pi}{3}+x\right)\)+sin2\(\left(\frac{2\pi}{3}-x\right)\)
\(A=\sin^2x+\left[\sin\left(\frac{2\pi}{3}+x\right)+\sin\left(\frac{2\pi}{3}-x\right)\right]^2-2\sin\left(\frac{2\pi}{3}-x\right).\sin\frac{2\pi}{3}+x\)
\(A=\sin^2x+4\left[\frac{\sin2\pi}{3}.\sin x\right]^2-\left[\frac{\sin4\pi}{3}+\sin2x\right]\)
\(A=\sin^2x+\sin x^2-\left[\sin2x-\frac{1}{2}\right]\)
\(A=2\sin x^2-\left[2\sin^2x-\frac{3}{2}\right]\)
\(A=\frac{3}{2}\)
vậy biểu thức trên ko phụ thuộc vào biến số x
Phương trình ( 2 ) \(\Leftrightarrow\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(3x+2y+z\right)=36\)
\(\Leftrightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)=22\)
Áp dụng BĐT Cô-si, ta có :
\(6\left(\frac{x}{y}+\frac{y}{x}\right)\ge12;3\left(\frac{x}{z}+\frac{z}{x}\right)\ge6;2\left(\frac{z}{y}+\frac{y}{z}\right)\ge4\)
\(\Rightarrow6\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{x}{z}+\frac{z}{x}\right)+2\left(\frac{y}{z}+\frac{z}{y}\right)\ge22\)
Dấu "=" xảy ra khi x = y = z
khi đó : ( 1 ) \(\Leftrightarrow x^3+x^2+x-14=0\)\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+7\right)=0\)
\(\Leftrightarrow x=2\)
Vậy hệ phương trình có nghiệm duy nhất x = y = z = 2
Thể tích khối cầu là: \(\frac{4}{3}\pi R^3\)
Độ dài cạnh hình vuông là: \(R\sqrt{2}\).
Thể tích của khối trụ là: \(\left(\frac{R\sqrt{2}}{2}\right)^2\pi\left(R\sqrt{2}\right)=\frac{\pi R^3\sqrt{2}}{2}\)
Phần thể tích khối cầu nằm ngoài khối trụ là: \(\frac{\pi R^3}{6}\left(8-3\sqrt{2}\right)\).
\(cos2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{3}-x\right)=\frac{5}{2}\)
\(4sin\left(x+\frac{\pi}{6}\right)+\left(x+\frac{\pi}{6}\right)cos2=\frac{5}{2}\)
\(\frac{1}{6}\left(24sin\right)\left(x+\frac{\pi}{6}\right)+6x\left(cos2\right)=\frac{5}{2}\)
\(2\sqrt{3}sin\left(x\right)+x\)\(cos\left(2\right)+2cos\left(x\right)+\frac{1}{6}\pi\)\(cos\left(2\right)=\frac{5}{2}\)
\(\left(2\sqrt[6]{-1}-2\left(-1^{\frac{5}{6}}\right)\right)sin\left(x\right)+x\left(cos2\right)+\left(2\sqrt[3]{-1-2\left(-1^{\frac{2}{3}}\right)}\right)cos\left(x\right)=\frac{5}{2}-\frac{1}{6}\pi\)\(cos\left(2\right)\)
\(24sin\left(x+\frac{\pi}{6}\right)+\left(6x+\pi\right)cos\left(2\right)=15\)
\(4sin\left(x+\frac{\pi}{6}\right)+x\)\(cos\left(2\right)+\frac{1}{6}\pi\)\(cos\left(2\right)=\frac{5}{2}\)
\(\Rightarrow x=\left\{-15,1252;-13,976;-6,8388;-3,93832\right\}\)