Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 9x2 - 6x - 3 = 0
<=> 3(3x2 - 2x - 1) = 0
<=> 3(3x2 - 3x + x - 1) = 0
<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)
<=> 3(3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
b. (2x + 1)2 - 4(x + 2)2 = 9
<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)
<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9
<=> -3(4x + 5) = 9
<=> 4x + 5 = -3
<=> 5 + 3 = -4x
<=> -4x = 8
<=> -x = 2
<=> x = -2
a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2-4=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)
c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)
a) (x-2)3+6(x+1)2-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0
\(\Rightarrow\)24x+10=0
\(\Rightarrow\)24x=-10
\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)
b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2
\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2
\(\Rightarrow\)x2-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2
\(\Rightarrow\)3x2-18x-22=3x2+2x+17
\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0
\(\Rightarrow\)-20x-39=0
\(\Rightarrow\)-20x=39
\(\Rightarrow\)x=\(-\dfrac{39}{20}\)
a: Ta có: \(\left(x-3\right)^2-x\left(x+5\right)=9\)
\(\Leftrightarrow x^2-6x+9-x^2-5x=9\)
\(\Leftrightarrow x=0\)
b: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
\(\left(x^2+x-2\right)^2=3\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+2\right)\right]^2=3\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)^2=3\left(x^4+x^2+1\right)\)
\(\Leftrightarrow x^4+4x^3+4x^2-2x^3-8x^2-8x+x^2+4x+4=3x^4+3x^2+3\)
\(\Leftrightarrow x^4+2x^3-3x^2-4x+4-3x^4-3x^2-3=0\)
\(\Leftrightarrow-2x^4+2x^3-6x^2-4x+1=0\)
A/ \(2\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=3\end{matrix}\right.\)
KL:...........
B/ \(\left(x-1\right)^2\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
KL:..................
C/ \(\left(\frac{2x}{3}+4\right)\left(2x-3\right)\left(\frac{x}{2}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{3}+4=0\\2x-3=0\\\frac{x}{2}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\frac{3}{2}\\x=2\end{matrix}\right.\)
KL:.....................
a) \(x^3+x^2y-x^2z-xyz\)
\(=x^2\left(x+y\right)-xz\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xz\right)\)
\(=x\left(x+y\right)\left(x-z\right)\)
b) \(x^2-6x+9-9y^2\)
\(=\left(x^2-2\cdot x\cdot3+3^2\right)-\left(3y\right)^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
c) \(x^2+9x+20\)
\(=x^2+5x+4x+20\)
\(=x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(x+5\right)\left(x+4\right)\)
d) \(x^4+4\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot2+4-2\cdot x^2\cdot2\)
\(=\left(x^2+2\right)-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
a/\(x^3+x^2y-x^2z-xyz\)
\(=\left(x^3-x^2y\right)+\left(x^2y-xyz\right)\)
\(=x^2\left(x-z\right)+xy\left(x-z\right)\)
\(=\left(x-z\right)\left(x^2+xy\right)\)
b/\(x^2-6x+9-9y^2\)
\(=\left(x^2-6x+9\right)-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3+3y\right)\left(x-3-3y\right)\)
c/\(x^2+9x+20\)
\(=x^2+4x+5x+20\)
\(=\left(x^2+4x\right)+\left(5x+20\right)\)
\(=x\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+5\right)\left(x+4\right)\)
d/\(x^4+4\)
\(=x^4+4x^2-4x^2+4\)
\(=\left(x^2+4x^2+4\right)-4x^2\)
\(=\left(x+2\right)^2-\left(2x\right)^2\)
\(=\left(x+2-2x\right)\left(x+2+2x\right)\)
\(6x^4-2x^3-x^2+2=0\)
\(\Leftrightarrow6x^4-8x^3+4x^2+6x^3-8x^2+4x+3x^2-4x+2=0\)
\(\Leftrightarrow2x^2\left(3x^2-4x+2\right)+2x\left(3x^2-4x+2\right)+\left(3x^2-4x+2\right)=0\)
\(\Leftrightarrow\left(3x^2-4x+2\right)\left(2x^2+2x+1\right)=0\)
Mà \(2x^2+2x+1=2\left(x+\frac{1}{2}\right)^2 +\frac{1}{2}>0\forall x\)
\(3x^2-4x+2=3\left(x-\frac{2}{3}\right)^2+\frac{2}{3}>0\left(\forall x\right)\)
Do đó tập nghiệm của pt là: \(S=\varnothing\)
Chúc bạn học tốt.
Ta có : A = x(x + 1)(x2 + x - 4)
= (x2 + x)(x2 + x - 4)
Đặt x2 + x = t
Khi đó A = t(t - 4)
= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> t - 2 = 0
=> t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 + 2x - x - 2 = 0
=> x(x + 2) - (x + 2) = 0
=> (x - 1)(x + 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A <=> t( t - 4 )
= t2 - 4t
= ( t2 - 4t + 4 ) - 4
= ( t - 2 )2 - 4
= ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra <=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1 ) + 2( x - 1 ) = 0
<=> ( x - 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
=> MinA = -4 <=> x = 1 hoặc x = -2