Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả 2 pt đều giải theo kiểu cái đầu nhóm với cái cuối, 2 cái ở giữa nhóm với nhau. sau đó giải theo cách đặt ẩn phụ
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)
\(\Leftrightarrow\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
Đặt \(x^2+7x=a\), nên ta có :
\(\left(a+10\right)\left(a+12\right)-24=0\)
\(\Leftrightarrow\left(x+11-1\right)\left(x+11+1\right)-24=0\)
\(\Leftrightarrow\left[\left(x+11\right)^2-1\right]-24=0\)
\(\Leftrightarrow\left(x+11\right)^2-25=0\)
\(\Leftrightarrow\left(x+11-5\right)\left(x+11+5\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x+16\right)=0\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-16\end{cases}}\)
Bài 1:
\(\left\{{}\begin{matrix}x+2y=1\\2x^2-5xy=48\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\2x^2-5xy=48\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2)\(\Leftrightarrow2\left(1-2y\right)^2-5\left(1-2y\right)y=48\Leftrightarrow2\left(1-4y+4y^2\right)-5y+10y^2=48\Leftrightarrow2-8y+8y^2-5y+10y^2=48\Leftrightarrow18y^2-13y-46=0\Leftrightarrow\left(y-2\right)\left(18y+23\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}y=2\\y=-\frac{23}{18}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\x=\frac{32}{9}\end{matrix}\right.\)
Vậy (x;y)={(\(-3;2\));(\(\frac{32}{9};-\frac{23}{18}\))}
Bài 2:
a) Đặt a=x2-1(a\(\ge-1\))
Vậy pt\(\Leftrightarrow a^2-4a=5\Leftrightarrow a^2-4a-5=0\Leftrightarrow\left(a-5\right)\left(a+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=5\\a=-1\end{matrix}\right.\)(tm)
TH1: a=5\(\Leftrightarrow x^2-1=5\Leftrightarrow x^2=6\Leftrightarrow x=\pm\sqrt{6}\)
TH2: a=-1\(\Leftrightarrow x^2-1=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy S={\(-\sqrt{6};0;\sqrt{6}\)}
b) \(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\Leftrightarrow x^2+4x+4-3x-5=1-x^2\Leftrightarrow2x^2+x-2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{-1+\sqrt{17}}{4}\\x=\frac{-1-\sqrt{17}}{4}\end{matrix}\right.\)
Vậy S={\(\frac{-1+\sqrt{17}}{4};\frac{-1-\sqrt{17}}{4}\)}
c) Đặt a=\(x^2-3x+2\)
Vậy pt\(\Leftrightarrow\left(a+2\right)a=3\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)(tm)
TH1:\(a=1\Leftrightarrow x^2-3x+2=1\Leftrightarrow x^2-3x+1=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{matrix}\right.\)
TH2: a=-3\(\Leftrightarrow x^2-3x+2=-3\Leftrightarrow x^2-3x+5=0\)(vô nghiệm)
Vậy S=\(\left\{\frac{3+\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right\}\)
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
a \(\hept{\begin{cases}2x+2y+3x-3y=4\\2x-2y+x+y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}5x-y=4\\3x-y=5\end{cases}}.\)
\(2x=-1\Leftrightarrow x=\frac{-1}{2}\) " thay x = 1/2 rồi tự làm
b)
\(\hept{\begin{cases}6xy-9x+4y-6=6xy\\4xy-20x+5y-25=4xy\end{cases}\Leftrightarrow\hept{\begin{cases}-9x+4y=6\\-20x+5y=25\end{cases}}}\)
4y 5y " chung 20 "
\(\hept{\begin{cases}-45x+20y=30\\-80x+20y=100\end{cases}}\Leftrightarrow35x=-70\Leftrightarrow x=-2\)
thay x=-2 vào pt 1 hoăc 2 rồi tự làm
hệ phương trình trên bạn đặt x+y=a và x-y= b sau đó bạn giải hệ vừa đặt ẩn phụ để tìm a, b rồi bạn giải cái hệ x+y=a và x-y= b là tìm đc x và y bạn nhé!
còn hệ phương trình dưới thì bạn chỉ cần nhân vào rồi chuyển vế nó sẽ mất hạng tử chứa x.y thì nó sẽ trở thành hệ bình thường rồi bạn giải hệ đó ra sẽ tìm đc x và y nha bạn!
Lần sau đừng tự tiện xếp vào phần bất pt bạn nhé :(
Ta có : \(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)=3x^2\)
\(\Leftrightarrow4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)=3x^2\)
\(\Leftrightarrow4\left(x^2+17x+60\right)\left(x^2+16x+60\right)=3x^2\)(1)
Đặt \(x^2+16x+60=a\)
Pt (1) \(\Leftrightarrow4\left(a+x\right)a=3x^2\)
\(\Leftrightarrow4\left(a^2+ax\right)=3x^2\)
\(\Leftrightarrow4a^2+4ax=3x^2\)
\(\Leftrightarrow4a^2+4ax+x^2=4x^2\)
\(\Leftrightarrow\left(2a+x\right)^2=4x^2\)
\(\Leftrightarrow\orbr{\begin{cases}2a+x=2x\\2a+x=-2x\end{cases}}\)
*Nếu \(2a+x=2x\)
\(\Leftrightarrow2a=x\)
\(\Leftrightarrow x^2+16x+60=x\)
\(\Leftrightarrow x^2+15x+60=0\)
\(\Leftrightarrow x^2+2.\frac{15}{2}.x+\frac{225}{4}+\frac{15}{4}=0\)
\(\Leftrightarrow\left(x+\frac{15}{2}\right)^2+\frac{15}{4}=0\)
Pt vô nghiệm
*Nếu \(2a+x=-2x\)
\(\Leftrightarrow2a+3x=0\)
\(\Leftrightarrow2\left(x^2-16x+60\right)+3x=0\)
\(\Leftrightarrow2x^2-32x+120+3x=0\)
\(\Leftrightarrow2x^2-29x+120=0\)
\(\Leftrightarrow x^2-\frac{29}{2}x+60=0\)
\(\Leftrightarrow x^2-2.\frac{29}{4}.x+\frac{841}{16}+\frac{119}{16}=0\)
\(\Leftrightarrow\left(x-\frac{29}{4}\right)^2+\frac{119}{16}=0\)
Pt vô nghiệm
Vậy pt vô nghiệm