\(x^2-5x+14=4\sqrt{x+1}\)

2. \(x^4+x^2+1=y^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé 

a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)

Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương 

\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)

Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7) 

NV
24 tháng 10 2019

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)

\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)

b/ ĐKXĐ: ....

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)

\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)

\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)

NV
24 tháng 10 2019

a/ ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{3+x}=x^2-3\)

Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:

\(a=x^2-\left(a^2-x\right)\)

\(\Leftrightarrow x^2-a^2+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)

\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))

\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)

d/ ĐKXĐ: ...

\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)

\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)

\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))

14 tháng 12 2017

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1

Khi đó Pt 36√x−2 +4√x−2+4√y−1 +√y−1=28

theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24

                                  và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4

Pt đã cho có VT>= 28 Dấu "=" xảy ra 

36√x−2 =4√x−2⇔x=11

và 4√y−1 =√y−1⇔y=5

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

NV
4 tháng 6 2019

Câu 1:

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{\left(x^2+\frac{1}{4}+3x\right)}{x}.\frac{\left(x^2+\frac{1}{4}-x\right)}{x}=12\)

\(\Leftrightarrow\left(x+\frac{1}{4x}+3\right)\left(x+\frac{1}{4x}-1\right)-12=0\)

Đặt \(x+\frac{1}{4x}-1=a\) ta được:

\(\left(a+4\right)a-12=0\Leftrightarrow a^2+4a-12=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{4x}-1=2\\x+\frac{1}{4x}-1=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+\frac{1}{4}=0\\x^2+5x+\frac{1}{4}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}...\\...\end{matrix}\right.\)

NV
4 tháng 6 2019

Câu 2:

\(x=\sqrt{3+\sqrt{12+2\sqrt{12}+1}}=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)

\(=\sqrt{4+\sqrt{12}}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(y=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{y}=\sqrt{3}-1\)

\(B=\frac{2\left(4+2\sqrt{3}\right)-5\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)+3\left(4-2\sqrt{3}\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\left(4-2\sqrt{3}\right)}\)

\(B=\frac{8+4\sqrt{3}-10+12-6\sqrt{3}}{2-4+2\sqrt{3}}=\frac{10-2\sqrt{3}}{-2+2\sqrt{3}}=\frac{5-\sqrt{3}}{\sqrt{3}-1}\)

\(B=\frac{\left(5-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{5\sqrt{3}+5-3-\sqrt{3}}{2}=\frac{2+4\sqrt{3}}{2}=2\sqrt{3}+1\)