K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

\(<=>x^2-\sqrt{3}x-\sqrt{5}x+\sqrt{15}=0<=>x\left(x-\sqrt{3}\right)-\sqrt{5}\left(x-\sqrt{3}\right)=0<=>\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)=0\)

<=>Tự làm

27 tháng 3 2016

\(x^2-\left(\sqrt{3}+\sqrt{5}\right).x+\sqrt{3}.\sqrt{5}=0\)

\(\Leftrightarrow x^2-\sqrt{3}.x-\sqrt{5}.x+\sqrt{3}.\sqrt{5}=0\)

\(\Leftrightarrow x^2-\sqrt{3}.x-\sqrt{5}.x+\sqrt{3}.\sqrt{5}=0\)

\(\Leftrightarrow x\left(x-\sqrt{3}\right)-\sqrt{5}\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\int^{x-\sqrt{5}=0}_{x-\sqrt{3}=0}\Leftrightarrow\int^{x=\sqrt{5}}_{x=\sqrt{3}}\)

Vậy x \(\in\left\{\sqrt{3};\sqrt{5}\right\}\)

21 tháng 7 2019

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

21 tháng 7 2019

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)

13 tháng 4 2022

Đặt \(\left|x\right|=t\left(t\ge0\right)\). Ta có phương trình \(t^2-t=6\)

\(\Rightarrow t^2-t-6=0\Rightarrow t^2-3t+2t-6=0\)

\(\Rightarrow\left(t-3\right)\left(t+2\right)=0\Rightarrow\left[{}\begin{matrix}t=3\left(TM\right)\\t=-2\left(L\right)\end{matrix}\right.\)

\(\Rightarrow\left|x\right|=3\Rightarrow x=\pm3\)

Ta có: \(\sqrt{7-3\sqrt{5}}\)

\(=\frac{\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)

\(=\frac{\sqrt{9-2\cdot3\cdot\sqrt{5}+5}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|3-\sqrt{5}\right|}{\sqrt{2}}\)

\(=\frac{3-\sqrt{5}}{\sqrt{2}}\)(Vì \(3>\sqrt{5}\))