Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Huỳnh Ngọc Cẩm Tú - Toán lớp 6 - Học toán với OnlineMath
a, ⇔ x4 - 2x3 + 4x3 - 8x2 + 4x2 - 8x + 3x - 6 = 0
⇔ (x - 2)(x3 + 4x2 + 4x + 3) = 0
⇔ (x - 2)(x3 + 3x2 + x2 + 3x + x + 3) = 0
⇔ (x - 2)(x + 3)(x2 + x + 1) = 0 mà x2 + x + 1 > 0 ∀ x
⇔ \(\left\{{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy tập nghiệm phương trình S = {2; -3}
a) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}=\frac{3}{5}x-\frac{7}{15}\)
\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}-\frac{3}{5}x+\frac{7}{15}=0\)
\(\Leftrightarrow\frac{8}{15}x=0\)
\(\Leftrightarrow x=0\)
$\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{103.105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{103}-\frac{1}{105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{1}{2}.\left(1-\frac{1}{105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{52}{105}.\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{52}{105}x-\frac{52}{105}=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow x=-\frac{3}{11}$
b) Đặt \(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\)
A\(=\frac{1}{100}\left(\frac{100}{1.101}+\frac{100}{2.102}+\frac{1}{3.103}+...+\frac{100}{10.110}\right)\)
A\(=\frac{1}{100}\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)
A\(=\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)Đặt \(B=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{10}{100.110}\)
\(B=\frac{1}{10}\left(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110}\right)\)
\(B=\frac{1}{10}\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
\(B=\frac{1}{10}\left[\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\right]\)\(=\frac{1}{10}\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)\(B=10A\)
\(A.x=10A\)
\(=>x=10\)
b) \(\dfrac{7}{2}-\left(\dfrac{x}{5}-\dfrac{1}{4}\right)=\dfrac{9}{2}\)
<=> \(\dfrac{7}{2}-\dfrac{x}{5}+\dfrac{1}{4}=\dfrac{9}{2}\)
<=> \(\dfrac{15}{4}-\dfrac{x}{5}-\dfrac{9}{2}=0\)
<=> \(\dfrac{x}{5}=\dfrac{5}{4}\)
<=> x = 6,25
Vậy,...
c) ( x + 2)( x + 3)( x - 5)( x - 6) = 180
<=> ( x + 2)( x - 5)( x + 3)( x - 6) = 180
<=> ( x2 - 3x - 10 )( x2 - 3x - 18 ) = 180
Đặt : x2 - 3x - 14 = a , ta có :
( a + 4)( a - 4) = 180
<=> a2 - 16 - 180 = 0
<=> a2 - 196 = 0
<=> ( a - 14)( a + 14 ) = 0
<=> a = 14 hoặc a = -14
* Với , a = 14 , ta có :
x2 - 3x - 14 = 14
<=> x2 - 3x - 28 = 0
<=> x2 - 7x + 4x - 28 = 0
<=> x( x - 7) + 4( x - 7) = 0
<=> ( x + 4)( x - 7) = 0
<=> x = -4 hoặc : x = 7
* Với : a = -14 , ta có :
x2 - 3x - 14 = -14
<=> x( x - 3) = 0
<=> x = 0 hoặc : x = 3
Vậy,...