Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
1)ĐK : ........
đặt \(\sqrt{x+5}=a;\sqrt{x+2=b}\) ta có \(a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
=> \(\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(1+ab\right)=0\)
=> \(\left(a-b\right)\left(a+b-ab-1\right)=0\)
=> \(\left(a-b\right)\left(a-1\right)\left(1-b\right)=0\)
đến đây bạn tự giải nha
2) xét
VT = \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{1}+\sqrt{9}=4\)
Dấu = xảy ra khi x =3
\(-5-x^2+6x=-\left(x-3\right)^2+4\le4\)
Dấu bằng xảy ra tại x = 3
=> VT = VP = 4 tại x = 3
Vậy x = 3 là n* duy nhất
Lời giải:
ĐKXĐ: \(x^2\geq 5\)
PT \(\Leftrightarrow (\sqrt{x^2+7}-4)-(\sqrt{x^2-5}-2)=x-3\)
\(\Leftrightarrow \frac{x^2+7-16}{\sqrt{x^2+7}+4}-\frac{x^2-5-4}{\sqrt{x^2-5}+2}=x-3\)
\(\Leftrightarrow \frac{(x-3)(x+3)}{\sqrt{x^2+7}+4}-\frac{(x-3)(x+3)}{\sqrt{x^2-5}+2}=x-3\)
\(\Leftrightarrow (x-3)\left[1+\frac{x+3}{\sqrt{x^2-5}+2}-\frac{x+3}{\sqrt{x^2+7}+4}\right]=0(1)\)
Với \(\forall x^2\geq 5\) thì:
\(\left\{\begin{matrix} x+3>0\\ \sqrt{x^2-5}+2< \sqrt{x^2+7}+4\end{matrix}\right.\Rightarrow \frac{x+3}{\sqrt{x^2-5}+2}>\frac{x+3}{\sqrt{x^2+7}+4}\)
\(\Rightarrow 1+\frac{x+3}{\sqrt{x^2-5}+2}-\frac{x+3}{\sqrt{x^2+7}+4}\neq 0(2)\)
Từ (1);(2) \(\Rightarrow x-3=0\Rightarrow x=3\) (thỏa mãn)
Vậy.......