Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=4\)
hay x=5
e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)
\(\Leftrightarrow\left|2x-7\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$
$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$
$\Leftrightarrow x\leq 2$
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 1=2\sqrt{x-2}$
$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$
$\Leftrightarrow \frac{1}{4}=x-2$
$\Leftrightarrow x=\frac{9}{4}$ (tm)
1) \(\sqrt[]{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=21^2\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)
2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)
\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)
\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)
mà \(\sqrt[]{1-x}\ge0\)
\(\Leftrightarrow pt.vô.nghiệm\)
3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)
\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)
\(\Leftrightarrow2x=50\Leftrightarrow x=25\)
1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))
\(\Leftrightarrow3\sqrt{x-1}=21\)
\(\Leftrightarrow\sqrt{x-1}=7\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=49+1\)
\(\Leftrightarrow x=50\left(tm\right)\)
2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))
\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý)
Phương trình vô nghiệm
3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)
\(\Leftrightarrow2x=50\)
\(\Leftrightarrow x=\dfrac{50}{2}\)
\(\Leftrightarrow x=25\left(tm\right)\)
4) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
5) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow x+x=3+3\)
\(\Leftrightarrow x=\dfrac{6}{2}\)
\(\Leftrightarrow x=3\)
\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
Điều kiện \(x\ge0.\) Phương trình tương đương với (chuyển vế, bình phương)
\(\left(\sqrt{x}+\sqrt{x+9}\right)^2=\left(\sqrt{x+1}+\sqrt{x+4}\right)^2\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x+5+2\sqrt{x^2+5x+4}\)
\(\Leftrightarrow\left(2+\sqrt{x^2+9x}\right)^2=x^2+5x+4\Leftrightarrow4+4\sqrt{x^2+9x}+x^2+9x=x^2+5x+4\)
\(\Leftrightarrow4x+4\sqrt{x^2+9x}=0\)
Vì \(x\ge0\) nên vế trái luôn không âm. Do đó để có dấu bằng thì \(x=0\) (thỏa mãn).
Vậy phương trình có nghiệm duy nhất \(x=0\).
Câu trả lời hay nhất: Hình như đề bài này phải là : √(x+4)+√(x-4)+12-2x=2√(x^2-16) ak?
Nếu đúng như t viết thì làm như sau
Đặt √(x+4) + √(x-4) = t ( với t> = 0)
=> ( √(x+4) +√(x-4) ) ^2 = t^2
<=> 2x + 2√(x+4)(x-4) = t^2
<=>2x + 2 √(x^2-16) = t^2 (**)
pt tương đương với
t+12 = t^2
<=> t^2 -t -12 =0
<=> t=4 hoặc t= -3 ( loại vì t> = 0)
t= 4 thay vào (**) ta đc
2x+ 2√(x^2-16) = 4^2
<=> x + √(x^2-16) = 8
<=> √(x^2-16) = 8-x
<=> x^2 -16 = (8-x)^2 ( với x< =8 )
<=> x^2 -16 = 64 -16x + x^2
<=> 16x = 80
<=> x = 5 ( thỏa mãn )
vậy nghiệm pt là x= 5
____________Xuân Toàn ____________
a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)
`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`
`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\)
`b)sqrt{x-3}/sqrt{2x+1}=2`
ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)
`<=>x>=3`
`pt<=>sqrt{x-3}=2sqrt{2x+1}`
`<=>x-3=8x+4`
`<=>7x=7`
`<=>x=1(l)`
`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`
`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`
`<=>|x-1|+|x-2|=3`
`**x>=2`
`pt<=>x-1+x-2=3`
`<=>2x=6`
`<=>x=3(tm)`
`**x<=1`
`pt<=>1-x+2-x=3`
`<=>3-x=3`
`<=>x=0(tm)`
`**1<=x<=2`
`pt<=>x-1+2-x=3`
`<=>=-1=3` vô lý
Vậy `S={0,3}`
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
đk: \(x\ge4\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+9}=\sqrt{x-1}+\sqrt{x-4}\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x-5+2\sqrt{x^2-5x+4}\)
\(\Leftrightarrow14+2\sqrt{x^2+9x}=2\sqrt{x^2-5x+4}\)
\(\Leftrightarrow7+\sqrt{x^2+9x}=\sqrt{x^2-5x+4}\)
\(\Leftrightarrow49+14\sqrt{x^2+9x}+x^2+9x=x^2-5x+4\)
\(\Leftrightarrow14\sqrt{x^2+9x}=-14x-45\)
\(\Leftrightarrow\hept{\begin{cases}196\left(x^2+9x\right)=196x^2+1260x+2025\\-14x-45\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}504x=2025\\x\le\frac{-45}{14}\end{cases}}\Leftrightarrow x=\frac{225}{56}\) (loại)
=> pt vô nhiệm
ĐK: \(x\ge4\)
PT \(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{x-1}}+\frac{13}{\sqrt{x+9}+\sqrt{x+4}}=0\)
Đến đây thấy ngay pt vô nghiệm.
True?