Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)
Thấy rằng \(5-2\sqrt{6}\) là nghịch đảo của \(5+2\sqrt{6}\), Vì vậy
\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=1\)
Đặt \(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}=t\) ta dc pt sau
\(t+\frac{1}{t}=10\Rightarrow t^2-10t+1=0\Rightarrow t=5\pm2\sqrt{6}\)
Vì vậy \(t=5\pm2\sqrt{6}=\left(5-2\sqrt{6}\right)^{\pm1}=\left(5-2\sqrt{6}\right)^{\frac{x}{2}}\)
Suy ra \(\frac{x}{2}=\pm1\Rightarrow x=\pm2\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
\(PT\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-5x^2-2\sqrt{5}x-1\)
\(\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-\left(\sqrt{5}x+1\right)^2\)
\(\Rightarrow x+\sqrt{6x^2+6}\le0\)