K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://olm.vn/hoi-dap/detail/64436964935.html

11 tháng 4 2019

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24=1.2.3.4=\left(-1\right)\left(-2\right)\left(-3\right)\left(-4\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

\(S=\left\{-2;0\right\}\)

24 tháng 2 2021

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

a: \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)

c: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)

d: \(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

=>x+3=0 hoặc x-4=0

=>x=-3 hoặc x=4

e: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)

f: \(\Leftrightarrow\left(2x+3\right)\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{-\dfrac{3}{2};4;-4\right\}\)

8 tháng 2 2022

a, \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)

b, \(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=4\end{matrix}\right.\)

c, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)

d, \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

e, tương tự d 

f, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\pm4\end{matrix}\right.\)

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

3 tháng 5 2019

PT \(\Leftrightarrow\left[x\left(x+1\right)\right].\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(x^2+x=t\) ta được:

\(t\left(t-2\right)-24=0\Leftrightarrow t^2-2t-24=0\)

\(\Leftrightarrow t^2-6t+4t-24=0\)\(\Leftrightarrow t\left(t-6\right)+4\left(t-6\right)=0\)

\(\Leftrightarrow\left(t-6\right)\left(t+4\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=-4\end{cases}}\)

Suy ra \(\orbr{\begin{cases}x^2+x-6=0\\x^2+x+4=0\end{cases}}\)

Ez rồi.

20 tháng 2 2020

a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)

\(\Leftrightarrow x^4+2x^3+x^2+4x^2+4x+12=0\)

\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^3+3x^2+8x+12\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^3+2x^2+x^2+2x+6x+12\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)

có : \(x^2+x+6>0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

b,  \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)

\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]-297=0\)

\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+7x-21\right)-297=0\)

đặt \(x^2+4x-13=t\)

\(\Leftrightarrow\left(t+8\right)\left(t-8\right)-297=0\)

\(\Leftrightarrow t^2-64-297=0\)

\(\Leftrightarrow t^2=361\)

\(\Leftrightarrow t=\pm19\)

có t rồi tìm x thôi

14 tháng 1 2022

\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)

\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)

\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)

\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)

\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)

\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)

14 tháng 1 2022

\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)

\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)

\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)

5 tháng 3 2020

\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)

\(\Rightarrow x=\pm1\)

5 tháng 3 2020

Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;

16 tháng 2 2019

a) \(\left(x-3\right)^2-\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)-\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x^2-6x+9-x^2-2x-1=0\)

\(\Leftrightarrow-8x+8=0\Leftrightarrow-8\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy phương trình có tập nghiệm S = {1}

b) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

<=> x - 2 = 0 hoặc x + 2 = 0 hoặc x + 4 = 0

<=> x = 2 hoặc x = -2 hoặc x = -4

Vậy phương trình có tập nghiệm S = {  2; -2; -4 }

c) \(\left(3x-7\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(9x^2-42x+49\right)-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow9x^2-42x+49-4x^2-8x-4=0\)

\(\Leftrightarrow5x^2-50x+45=0\Leftrightarrow5\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)

Vậy phương trình có tập nghiệm S = { 1; 9 }