Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải phương trình:\(\frac{x^2+x}{x^2+3}+\frac{3x^2-x+15}{x^2+4}+\frac{x^2+x+2}{x^2+5}+x^3-3x^2+1=0\)
\(\frac{3x}{x^2+x+1}+\frac{3x}{x^2-x+1}=4\)
Xét x=0 không phải là nghiệm của phương trình, chia cả tử và mẫu của mỗi phân thức ở VT cho x, ta được:
\(\frac{3}{x+1+\frac{1}{x}}+\frac{3}{x-1+\frac{1}{x}}=4\)
Đặt \(x+\frac{1}{x}=y,\)khi đó phương trình có dạng:
\(\frac{3}{y+1}+\frac{3}{y-1}=4\Leftrightarrow\frac{6y}{y^2-1}=4\)
\(\Rightarrow4y^2-4=6y\Leftrightarrow4y^2-6y-4=0\)
\(\Leftrightarrow4y^2-8y+2y-4=0\)
\(\Leftrightarrow4y\left(y-2\right)+2\left(y-2\right)=0\Leftrightarrow\left(y-2\right)\left(4y+2\right)=0\)
\(\Leftrightarrow\left(y-2\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x^2-2x+1=0\\x+\frac{1}{x}=-\frac{1}{2}\Leftrightarrow x^2+1=-\frac{1}{2}x\Leftrightarrow x^2+\frac{1}{2}x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}+\frac{15}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\\left(x+\frac{1}{4}\right)^2=-\frac{15}{16}\left(\times\right)\end{cases}}\)
Vậy pt có nghiệm duy nhất là x=1.
\(\left\{{}\begin{matrix}\frac{3x}{x+1}+\frac{2}{y+4}=4\\\frac{2x}{x+1}-\frac{5}{y+4}=9\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\frac{x}{x+1}\\b=\frac{1}{y+4}\end{matrix}\right.\)
Thay a và b vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}3a+2b=4\\2a-5b=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6a+4b=8\\6a-15b=27\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19b=-19\\3a+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-1\\3a+2.\left(-1\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Ta có:
\(a=\frac{x}{x+1}=2\Leftrightarrow x=2\left(x+1\right)\)
<=> x=2x+2
<=> x=-2
\(b=\frac{1}{y+4}=-1\Leftrightarrow y+4=-1\Leftrightarrow y=-5\)
Vậy hệ phương trình có nghiệm \(\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
a) \(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)
\(\Leftrightarrow4x^2+\left(x+2\right)^2=4x\left(x+2\right)\)
\(\Leftrightarrow5x^2+4x+4=4x^2+8x\)
\(\Leftrightarrow5x^2+4x+4-4x^2-8x=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow x^2-2.x.2+2^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=2\)
1) Hình như đề bị sai rồi bạn.
Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)
Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)
Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)
2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)
pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)
\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)
Nhận thấy \(\Delta'=6^2-3.5=21>0\)
Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)