Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\)
\(\Leftrightarrow x=-2005\)
b) Sửa đề :
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x=300\)
c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)
\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)
\(\Leftrightarrow x=2004\)
Vậy....
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
2 -x/2002 + 1 -1 = 1-x/2003 + 1 - x/2004 + 1
=> 2004 - x/ 2002 = 2004 - x/ 2003 + 2004 -x/2004
=> (2004 -x) ( 1/2002-1/2003-1/2004)
ta thấy ( 1/2002-1/2003-1/2004) # 0
=> 2004 -x = 0 => x = 2004
2.
pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0
<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0
<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0
<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )
<=> x=2000
Tk mk nha
1.
a, = (2x-1)^2-2.(2x-1)+1-4
= (2x-1-1)^2-4
= (2x-2)^2-4
= (2x-2-2).(2x-2+2)
= 2x.(2x-4)
b, = [x.(x+3)].[(x+1).(x+2)]
= (x^2+3x).(x^2+3x+1)-8
= (x^2+3x+1)^2-1-8
= (x^2+3x+1)^2-9
= (x^2+3x+1-3).(x^2+3x+1+3)
= (x^2+3x-2).(x^2+3x+4)
= ((x+1).(x+3).(x^2+3x-2)
Tk mk nha
\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1=\left(\frac{1-x}{2001}+1\right)+\left(\frac{-x}{2003}+1\right)\)
\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow\left(2003-x\right)=0\) (vì \(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\))
\(\Leftrightarrow x=2003\).
Vậy tập nghiệm của phương trình là \(S=\left\{2003\right\}\).
a,\(\Leftrightarrow\left(\frac{1-x}{2013}+1\right)=\left(\frac{2-x}{2012}+1\right)-\left(1-\frac{x}{2014}\right)\)
\(\Leftrightarrow\frac{2014-x}{2013}=\frac{2014-x}{2012}-\frac{2014-x}{2014}\)
\(\Leftrightarrow\frac{2014-x}{2013}-\frac{2014-x}{2012}+\frac{2014-x}{2014}\)=0
\(\Leftrightarrow\left(2014-x\right)\left(\frac{1}{2013}-\frac{1}{2012}+\frac{1}{2014}\right)=0\)
\(\Leftrightarrow x=2014\left(do.cái.còn.lại.\ne0\right)\)
b,tương tự +1 vào cái thứ nhất ,+1 vào cái thứ 2,1- vào cái thứ 3 được x=2013
https://olm.vn/hoi-dap/detail/212443421285.html