K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow36\left(x+6\right)+36\left(x-6\right)=\dfrac{9}{2}\left(x^2-36\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{9}{2}-162-72x=0\)

\(\Leftrightarrow9x^2-144x-324=0\)

\(\Leftrightarrow x^2-16x-36=0\)

=>(x-18)(x+2)=0

=>x=18 hoặc x=-2

23 tháng 2 2022

ĐKXĐ:\(x\ne\pm6\)

\(\dfrac{36}{x-6}+\dfrac{36}{x+6}=4,5\\ \Leftrightarrow36\left(\dfrac{1}{x-6}+\dfrac{1}{x+6}\right)=4,5\\ \Leftrightarrow\dfrac{x+6}{\left(x-6\right)\left(x+6\right)}+\dfrac{x-6}{\left(x-6\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{x+6+x-6}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{2x}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow x^2-36=16x\\ \Leftrightarrow x^2-16x-36=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(18x+36\right)=0\\ \Leftrightarrow x\left(x+2\right)-18\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-18\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=18\left(tm\right)\end{matrix}\right.\)

30 tháng 4 2021

\(\dfrac{36}{x+6}+\dfrac{36}{x-6}=4,5\)

\(\Leftrightarrow36\left(x-6\right)+36\left(x+6\right)=4,5\left(x^2-36\right)\)

\(\Leftrightarrow36x-216+36x+216=4,5x^2-162\)

\(\Leftrightarrow-4,5x^2+72x+162=0\)

\(\Leftrightarrow\left(x-18\right)\left(-4,5x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=18\\x=-2\end{matrix}\right.\)

1 tháng 5 2021

bạn làm rõ hơn ở chỗ này đc ko, mk ko hiểu

⇔−4,5x2+72x+162=0⇔−4,5x2+72x+162=0

⇔(x−18)(−4,5x−9)=0

1: Ta có: \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)

Suy ra: \(x^2+4x+4+2x-4=x^2\)

\(\Leftrightarrow6x=0\)

hay \(x=0\left(nhận\right)\)

2: Ta có: \(\dfrac{1}{x-6}-\dfrac{2}{x+6}=\dfrac{3x+6}{x^2-36}\)

Suy ra: \(x+6-2x+12=3x+6\)

\(\Leftrightarrow-x-3x=6-18=-12\)

hay \(x=3\left(nhận\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Lời giải:
1. ĐKXĐ: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{(x+2)^2+2(x-2)}{(x-2)(x+2)}=\frac{x^2}{x^2-4}\)

\(\Leftrightarrow \frac{x^2+6x}{x^2-4}=\frac{x^2}{x^2-4}\)

\(\Rightarrow x^2+6x=x^2\Leftrightarrow x=0\) (tm)

2. ĐKXĐ: $x\neq \pm 6$

PT \(\Leftrightarrow \frac{6+x-2(x-6)}{(x-6)(6+x)}=\frac{3x+6}{x^2-36}\)

\(\Leftrightarrow \frac{18-x}{x^2-36}=\frac{3x+6}{x^2-36}\)

\(\Rightarrow 18-x=3x+6\Leftrightarrow 12=4x\Leftrightarrow x=3\) (tm)

 

a:=>3x=15

=>x=5

b: =>8-11x<52

=>-11x<44

=>x>-4

c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)

\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)

15 tháng 3 2018

\(\frac{36}{x+6}+\frac{36}{x-6}=\) \(4,5\)\(\left(ĐKCĐ:x\ne\pm6\right)\)

\(\Leftrightarrow\frac{36\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}+\frac{36\left(x+6\right)}{\left(x+6\right)\left(x-6\right)}\)\(=\frac{4,5\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}\)

\(\Leftrightarrow\frac{36x-216}{\left(x-6\right)\left(x+6\right)}+\frac{36x+216}{\left(x-6\right)\left(x+6\right)}\)\(=\frac{4,5x^2-162}{\left(x-6\right)\left(x+6\right)}\)

\(\Rightarrow36x-216+36x+216=4,5x^2-162\)

( đến đây giải phương trình ra rồi đối chiếu đkxđ là xong )

15 tháng 3 2018

\(\frac{36}{x+6}+\frac{36}{x-6}=4,5\)

\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)

\(DKXD:\hept{\begin{cases}x+6\ne0\\x-6\ne0\\\left(x+6\right)\left(x-6\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-6\\x\ne6\end{cases}}\)

\(\frac{72x}{\left(x+6\right)\left(x-6\right)}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)

\(4,5x^2+72x-162=0\)

\(4,5x^2-9x+81x-162=0\)

\(4,5\left(x-2\right)+81\left(x-2\right)=0\)

\(\left(x-2\right)\left(4,5x-81\right)=0\)

\(\left(x-2\right)4,5\left(x-18\right)=0\)

\(\hept{\begin{cases}x-2=0\\x-18=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=18\end{cases}}\)

16 tháng 6 2018

\(\dfrac{90}{x}-\dfrac{36}{x-6}=2\) ( x # 0 ; x # 6)

\(\dfrac{90\left(x-6\right)-36x}{x\left(x-6\right)}=\dfrac{2x\left(x-6\right)}{x\left(x-6\right)}\)

⇔ 90x - 540 - 36x = 2x2 - 12x

⇔-2x2 + 66x - 540 = 0

⇔ -2( x2 - 33x +270 ) = 0

⇔ x2 - 18x - 15x + 270 = 0

⇔ x( x - 18) - 15( x - 18) = 0

⇔ ( x - 18)( x - 15) = 0

⇔ x = 18 ( TM) hoac x = 15 ( TM)

KL........

a: \(\Leftrightarrow\dfrac{3x-2}{\left(x-2\right)\left(x-10\right)}-\dfrac{4x+3}{\left(x+8\right)\left(x-2\right)}=\dfrac{8x+11}{\left(x-10\right)\left(x+8\right)}\)

=>(3x-2)(x+8)-(4x+3)(x-10)=(8x+11)(x-2)

=>3x^2+24x-2x-16-4x^2+40x-3x+30=8x^2-16x+11x-22

=>-x^2+59x+14-8x^2+5x+22=0

=>-9x^2+54x+36=0

=>x^2-6x-4=0

=>\(x=3\pm\sqrt{13}\)

b: \(\Leftrightarrow\dfrac{2x-5}{\left(x+9\right)\left(x-4\right)}-\dfrac{x-6}{\left(x+7\right)\left(x-4\right)}=\dfrac{x+8}{\left(x+9\right)\left(x+7\right)}\)

=>(2x-5)(x+7)-(x-6)(x+9)=(x+8)(x-4)

=>2x^2+14x-5x-35-x^2-9x+6x+54=x^2+4x-32

=>x^2+6x+19=x^2+4x-32

=>2x=-51

=>x=-51/2

=>x^2-4+x^2-3x=x^2+6

=>x^2-3x-4=6

=>x^2-3x-10=0

=>(x-5)(x+2)=0

=>x=5(nhận) hoặc x=-2(loại)

a) Ta có: \(\dfrac{x}{x-3}-\dfrac{6}{x}-\dfrac{9}{x^2-3x}\)

\(=\dfrac{x^2}{x\left(x-3\right)}-\dfrac{6\left(x-3\right)}{x\left(x-3\right)}-\dfrac{9}{x\left(x-3\right)}\)

\(=\dfrac{x^2-6x+18-9}{x\left(x-3\right)}\)

\(=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

b) Ta có: \(\dfrac{7}{x}-\dfrac{x}{x+6}+\dfrac{36}{x^2+6x}\)

\(=\dfrac{7\left(x+6\right)-x^2+36}{x\left(x+6\right)}\)

\(=\dfrac{7x+42-x^2+36}{x\left(x+6\right)}\)

\(=\dfrac{-\left(x^2-7x-78\right)}{x\left(x+6\right)}\)

\(=\dfrac{-\left(x^2-13x+6x-78\right)}{x\left(x+6\right)}\)

\(=\dfrac{-\left[x\left(x-13\right)+6\left(x-13\right)\right]}{x\left(x+6\right)}\)

\(=\dfrac{13-x}{x}\)

c) Ta có: \(\dfrac{6}{x-3}-\dfrac{2x-6}{x^2-9}-\dfrac{4}{x+3}\)

\(=\dfrac{6\left(x+3\right)-2x+6-4\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{6x+18-2x+6-4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)

24 tháng 4 2022

\(\dfrac{2x-4}{x-3}+\dfrac{6}{3x-x^2}=\dfrac{x-1}{x}\)

\(\Leftrightarrow\dfrac{2x-4}{x-3}+\dfrac{-6}{x\left(x-3\right)}=\dfrac{x-1}{x}\)

ĐKXĐ: x ≠ 0 và x ≠ 3

\(\Leftrightarrow\dfrac{x\left(2x-4\right)}{x\left(x-3\right)}+\dfrac{-6}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x-1\right)}{x\left(x-3\right)}\)

\(\Leftrightarrow x\left(2x-4\right)+\left(-6\right)=\left(x-3\right)\left(x-1\right)\)

\(\Leftrightarrow2x^2-4x-6=x^2-3x-x+3\)

\(\Leftrightarrow2x^2-4x-6-x^2+3x+x-3=0\)

\(\Leftrightarrow x^2-9=0\Leftrightarrow x^2-3^2=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)