Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-90}{10}+\dfrac{x-76}{12}=\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
\(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)=\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)\)\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}=\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}-\dfrac{1}{14}-\dfrac{1}{16}-\dfrac{1}{17}\right)=0\)
\(\Leftrightarrow x-100=0\)
\(\Rightarrow x=100\)
vậy \(S=\left\{100\right\}\)
b: \(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+x-6\right)\)
\(\Leftrightarrow3x^2-10x+3=3x^2+3x-18\)
=>-13x=-21
hay x=21/13
c: \(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\)
=>x-100=0
hay x=100
1a)\(\dfrac{x-90}{10}-1+\dfrac{x-76}{12}-2+\dfrac{x-58}{14}-3+\dfrac{x-36}{16}-4+\dfrac{x-15}{17}-5=0\)
=> \(\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\)
=>\(\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\)
=> x=100( vi \(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\ne0\)
b) \(\dfrac{x-5}{2012}-1+\dfrac{x-4}{2013}-1=\dfrac{x-3}{2014}-1+\dfrac{x-2}{2015}-1\)
=> \(\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}-\dfrac{x-2017}{2015}=0\)
=>(x-2017).\(\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\right)=0\)
=> x=2015(vi .....................................................≠0)
2)
\(\dfrac{x+14}{86}+1+\dfrac{x+15}{85}+1+\dfrac{x+16}{84}+1+\dfrac{x+17}{83}+\dfrac{x+16}{4}=4\)
\(\dfrac{x+100}{86}+\dfrac{x+100}{85}+\dfrac{x+100}{84}+\dfrac{x+100}{83}=4-\dfrac{x+16}{4}\)
\(\left(x+100\right)\left(\dfrac{1}{86}+\dfrac{1}{85}+\dfrac{1}{84}+\dfrac{1}{83}\right)=-x\)
Mk giải đế đây rùi bạn tự giải nốt đi
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
\(\Leftrightarrow\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
\(\Leftrightarrow\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
có : \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
\(pt\)\(\Leftrightarrow\)\(({x-90\over10}-1)+({x-76\over12}-2)+\)\(+({x-58\over14}-3)+({x-36\over16}-4)+({x-15\over17}-5)=0\)
\(\Leftrightarrow\)\(({x-100\over10})+({x-100\over12})+({x-100\over14})+({x-100\over16})\)
\(+({x-100\over17})=0\)
\(\Leftrightarrow\)\((x-100)({1\over10}+{1\over12}+{1\over14}+{1\over16}+{1\over17})=0\)
\(\Rightarrow\)\(x-100=0\)
\(\Rightarrow\)\(x=100\)
a.
\(\dfrac{5x-17}{14}+\dfrac{x-3}{26}>\dfrac{29-9x}{91}\)
\(\Leftrightarrow13\left(5x-17\right)+7\left(x-3\right)>2\left(29-9x\right)\)
\(\Leftrightarrow65x-221+7x-21>58-18x\)
\(\Leftrightarrow65x+7x+18x>58+21+221\)
\(\Leftrightarrow90x>300\)
\(\Leftrightarrow x>\dfrac{10}{3}\)
b)
\(\dfrac{8x-1}{9}+\dfrac{3x-2}{4}< \dfrac{43+8x}{12}+\dfrac{35x}{36}\)
\(\Leftrightarrow4\left(8x-1\right)+9\left(3x-2\right)< 3\left(43+8x\right)+35x\)
\(\Leftrightarrow32x-4+27x-18< 129+24x+35x\)
\(\Leftrightarrow32x+27x-24x-35x< 129+18+4\)
\(\Leftrightarrow0x< 151\) ( luôn đúng)
Vậy bất pt vô số nghiệm
4)a)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)(1)
ĐKXĐ:\(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)
(1)\(\Rightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\)
\(\Leftrightarrow x^2+10x+25-\left(x^2-10x+25\right)=20\)
\(\Leftrightarrow x^2+10x+25-x^2+10x-25=20\)
\(\Leftrightarrow x^2-x^2+10x+10x=-25+25=20\)
\(\Leftrightarrow20x=20\)
\(\Leftrightarrow x=1\left(nh\text{ậ}n\right)\)
S=\(\left\{1\right\}\)
Bài 1:
\(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)
\(\Leftrightarrow \frac{99-x}{101}+1+\frac{97-x}{103}+1+\frac{95-x}{105}+1+\frac{93-x}{107}+1=0\)
\(\Leftrightarrow \frac{99-x+101}{101}+\frac{97-x+103}{103}+\frac{95-x+105}{105}+\frac{93-x+107}{107}=0\)
\(\Leftrightarrow \frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)
\(\Leftrightarrow (200-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\neq 0\) nên suy ra \(200-x=0\Rightarrow x=200\)
Bài 2:
\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+116}{4}=0\)
\(\Leftrightarrow \frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow \frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow (x+100)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
Vì \(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\neq 0\). Do đó \(x+100=0\Rightarrow x=-100\)
Câu 2:
ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)
\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)
\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)
\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)
\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)
Vậy \(S=\left\{-1\right\}\)
\(\dfrac{x-90}{10}+\dfrac{x-76}{12}=\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
\(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)=\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)\)\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}=\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}-\dfrac{1}{14}-\dfrac{1}{16}-\dfrac{1}{17}\right)=0\)
\(\Leftrightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(S=\left\{100\right\}\)