Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-2\right)^2=\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow x^2-4x+4-x^2+16=0\)
\(\Leftrightarrow20-4x=0\)
\(\Leftrightarrow4x=20\)
\(\Leftrightarrow x=5\)
Vậy S = {5}
b) ĐKXĐ: \(x\ne0;x\ne-2\)
\(\dfrac{x+2}{x}=\dfrac{\left(x+1\right)\left(x+4\right)}{x^2+2x}+\dfrac{x}{x+2}\)
\(\Leftrightarrow\dfrac{x+2}{x}=\dfrac{x^2+4x+x+4+x^2}{x\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x+2}{x}=\dfrac{2x^2+5x+4}{x\left(x+2\right)}\)
\(\Rightarrow x\left(x+2\right)^2=x\left(2x^2+5x+4\right)\)
\(\Leftrightarrow x^3+4x^2+4x=2x^3+5x^2+4x\)
\(\Leftrightarrow x^3+x^2=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(TM\right)\end{matrix}\right.\)
Vậy S = {-1}
c) Câu này mình không chắc về đề lắm! Bạn dùng ô chữ M bị ngược để viết lại đề nhé!
a) Ta có: \(\left(x-2\right)^2=\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow x^2-4x+4=x^2-16\)
\(\Leftrightarrow x^2-4x+4-x^2+16=0\)
\(\Leftrightarrow-4x+20=0\)
\(\Leftrightarrow-4x=-20\)
hay x=5
Vậy: S={5}
Lời giải:
Vì $|x+4|, |x+5|\geq 0$ với mọi $x\in\mathbb{R}$ nên:
$2x=|x+4|+|x+5|\geq 0$
$\Rightarrow x\geq 0$
$\Rightarrow |x+4|=x+4; |x+5|=x+5$. Do đó, pt trở thành:
$x+4+x+5=2x$
$\Leftrightarrow 0=9$ (vô lý)
Vậy pt vô nghiệm.
b)
Ta có:
$2x=|x+4|+|x+5|+...+|x+10|\geq 0$
$\Rightarrow x\geq 0$
$\Rightarrow |x+4|=x+4; |x+5|=x+5; ....;|x+10|=x+10$
Do đó pt trở thành:
$2x=(x+4)+(x+5)+...+(x+10)$
$2x=7x+49$
$x=\frac{-49}{5}<0$ (vô lý vì $x\geq 0$)
Vậy PT vô nghiệm.
b: =>1/4x+4/5-x-5=1/3x+1-1/2x+1
=>-3/4x+1/6x=2+5-4/5=24/5
=>x=-288/35
c: =>6x^2+3x-30x-15=6x^2+10x-21x-35
=>-27x-15=-11x-35
=>-16x=-20
=>x=5/4
a) 5(x-1)(x+1)=5x^2+3x-2
<=> (5x-5)(x+1) = (x+1)(5x-2)
<=> (x+1)(5x-5) - (x+1)(5x-2)=0
<=> (x+1)(5x-5-5x+2)=0
<=> (x+1).(-3)=0
<=> x+1=0<=> x=-1
Bài 1:
a.
$(4x^2+4x+1)-x^2=0$
$\Leftrightarrow (2x+1)^2-x^2=0$
$\Leftrightarrow (2x+1-x)(2x+1+x)=0$
$\Leftrightarrow (x+1)(3x+1)=0$
$\Rightarrow x+1=0$ hoặc $3x+1=0$
$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$
b.
$x^2-2x+1=4$
$\Leftrightarrow (x-1)^2=2^2$
$\Leftrightarrow (x-1)^2-2^2=0$
$\Leftrightarrow (x-1-2)(x-1+2)=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-1$
c.
$x^2-5x+6=0$
$\Leftrightarrow (x^2-2x)-(3x-6)=0$
$\Leftrightarrow x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $x-3=0$
$\Leftrightarrow x=2$ hoặc $x=3$
2c.
ĐKXĐ: $x\neq 0$
PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$
$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$
$\Leftrightarrow x=-4$ (tm)
2d.
ĐKXĐ: $x\neq 2$
PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$
$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$
$\Rightarrow 3x-5=3-x$
$\Leftrightarrow 4x=8$
$\Leftrightarrow x=2$ (không tm)
Vậy pt vô nghiệm.
a)
\((x-3)(x-5)(x-6)(x-10)=24x^2\)
\(\Leftrightarrow [(x-3)(x-10)][(x-5)(x-6)]=24x^2\)
\(\Leftrightarrow (x^2-13x+30)(x^2-11x+30)=24x^2\)
Đặt \(x^2-11x+30=a\). PT trở thành:
\((a-2x)a=24x^2\)
\(\Leftrightarrow a^2-2ax-24x^2=0\)
\(\Leftrightarrow a^2-6ax+4ax-24x^2=0\)
\(\Leftrightarrow a(a-6x)+4x(a-6x)=0\)
\(\Leftrightarrow (a+4x)(a-6x)=0\)
\(\Rightarrow \left[\begin{matrix} a+4x=0\\ a-6x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2-7x+30=0\\ x^2-17x+30=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} (x-3,5)^2+17,75=0(\text{vô lý})\\ (x-15)(x-2)=0\end{matrix}\right.\)
\(\Rightarrow x=15\) hoặc $x=2$
b)
Đặt \(x-7=a\). PT trở thành:
\((a+1)^4+(a-1)^4=272\)
\(\Leftrightarrow a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=272\)
\(\Leftrightarrow 2a^4+12a^2+2=272\)
\(\Leftrightarrow a^4+6a^2-135=0\)
\(\Leftrightarrow (a^2+3)^2-144=0\Leftrightarrow (a^2+3)^2-12^2=0\)
\(\Leftrightarrow (a^2+15)(a^2-9)=0\)
\(\Rightarrow a^2-9=0\Rightarrow a=\pm 3\)
\(\Rightarrow x=a+7=\left[\begin{matrix} 4\\ 10\end{matrix}\right.\)
a/ Đặt \(a=x+7\) pt trở thành:
\(\left(a-1\right)^4+\left(a+1\right)^4=272\)
\(\Leftrightarrow2a^4+12a^2+2=272\)
\(\Leftrightarrow a^4+6a^2-135=0\Rightarrow\left[{}\begin{matrix}a^2=9\\a^2=-15\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+7=3\\x+7=-3\end{matrix}\right.\)
b/ Tương tự, đặt \(x-\frac{7}{2}=a\)
\(\left(a-\frac{3}{2}\right)^4+\left(a+\frac{3}{2}\right)^4=17\)
\(\Leftrightarrow2a^4+27a^2+\frac{81}{16}=17\)
Bạn tự giải tiếp
Bạn ơi câu b bạn làm nốt cho mình được ko? Mình chưa hiểu lắm
a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)
b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)
\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: S={0;6}
c) Ta có: \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)
d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)
\(\Leftrightarrow30-6x=6x-8\)
\(\Leftrightarrow30-6x-6x+8=0\)
\(\Leftrightarrow-12x+38=0\)
\(\Leftrightarrow-12x=-38\)
\(\Leftrightarrow x=\dfrac{19}{6}\)
Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)
e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow6x+4-3x-1=12x+10\)
\(\Leftrightarrow3x+3-12x-10=0\)
\(\Leftrightarrow-9x-7=0\)
\(\Leftrightarrow-9x=7\)
\(\Leftrightarrow x=-\dfrac{7}{9}\)
Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)