Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
PT \(\Leftrightarrow \frac{(x+2)^3}{8}-\frac{x^3+8}{2}=0\)
\(\Leftrightarrow (x+2)^3-4(x^3+8)=0\)
\(\Leftrightarrow (x+2)^3-4(x+2)(x^2-2x+4)=0\)
\(\Leftrightarrow (x+2)[(x+2)^2-4(x^2-2x+4)]=0\)
\(\Leftrightarrow (x+2)(-3x^2+12x-12)=0\)
\(\Leftrightarrow (x+2)(x^2-4x+4)=0\Leftrightarrow (x+2)(x-2)^2=0\Rightarrow x=\pm 2\)
b) Bạn kiểm tra lại xem có sai đề không?
a) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
Suy ra: x+2=0
hay x=-2(thỏa ĐK)
Vậy: S={-2}
d)
ĐKXĐ: \(x\notin\left\{1;3\right\}\)
Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-3x+5x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+9=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3(loại)
Vậy: \(S=\varnothing\)
a: \(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)
=>x=0
b: \(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{x+1}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow x^2-4x+3=2x\left(x-3\right)-2\left(x^2-1\right)\)
\(\Leftrightarrow x^2-4x+3=2x^2-6x-2x^2+2=-6x+2\)
\(\Leftrightarrow x^2+2x+1=0\)
=>x=-1(nhận)
\(a,2x^3+4x^2+10x=0\\ \Leftrightarrow2x\left(x^2+2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x^2+2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x^2+2x+1\right)+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2+4=0\left(vô..lí\right)\end{matrix}\right.\)
\(b,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne3\\x\ne4\end{matrix}\right.\\ \dfrac{x^2-4x}{x^2-5x+4}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x}{x-1}-\dfrac{1}{2}-\dfrac{x+1}{x-3}=0\\ \Leftrightarrow\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)}-\dfrac{x^2-4x+3}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2x^2-2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-6x-x^2+4x-3-2x^2+2}{2\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow-x^2-2x-1=0\)
\(\Leftrightarrow x^2+2x+1=0\\ \Leftrightarrow\left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\left(tm\right)\)
\(a,\Leftrightarrow\dfrac{\left(x-3\right)^2-\left(x+3\right)^2-48}{x^2-9}=0\)
\(\Leftrightarrow x^2-6x+9-x^2-6x-9-48=0\)
\(\Leftrightarrow-12x-48=0\)
\(\Leftrightarrow-12x=48\)
\(\Leftrightarrow x=-4\)
\(b,\Leftrightarrow\dfrac{\left(x-5\right)\left(x+1\right)-\left(2x+3\right)-x\left(x-1\right)}{x^2-1}=0\)
\(\Leftrightarrow x^2+x-5x-5-2x-3-x^2+x=0\)
\(\Leftrightarrow-5x-8=0\)
\(\Leftrightarrow-5x=8\)
\(\Leftrightarrow x=-\dfrac{8}{5}\)
a, đk : x khác -1 ; 1 ; -2
\(\Rightarrow x^2+3x+2+x^2+x-2=2\left(x^2-1\right)\)
\(\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)
b, đk x khác -2 ; 2
\(\Rightarrow x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow-2x+12=8\Leftrightarrow-2x=-4\Leftrightarrow x=2\left(ktm\right)\)
pt vô nghiệm
a) \(\dfrac{5x}{2x+2}+1=\dfrac{6}{x+1}\left(đk:x\ne-1\right)\)
\(\dfrac{5x+2x+2}{2x+2}=\dfrac{12}{2x+2}\)
\(7x+2=12\)
\(7x=10\)
\(x=\dfrac{10}{7}\left(TM\right)\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
a) ĐKXĐ: \(x\notin\left\{-3;2;-1;\dfrac{1}{2}\right\}\)
Ta có: \(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{2}{\left(x+3\right)\left(x+1\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\dfrac{2\left(x-2\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{5x+5-2x+4}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-3}{2x-1}\)
\(\Leftrightarrow\dfrac{3x+9}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x-2\right)}=\dfrac{3}{1-2x}\)
Suy ra: \(\left(x+1\right)\left(x-2\right)=1-2x\)
\(\Leftrightarrow x^2-x-2-1+2x=0\)
\(\Leftrightarrow x^2+x-3=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-3\right)=13\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{13}}{2}\left(nhận\right)\\x_2=\dfrac{-1+\sqrt{13}}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{-1-\sqrt{13}}{2};\dfrac{-1+\sqrt{13}}{2}\right\}\)
Lớp 8 nên chưa học biệt thức delta
Ta có: \(x^2+x-3=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{13}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{13}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{13}-1}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
a: =>1+3x-6=-x+3
=>3x-5=-x+3
=>4x=8
=>x=2(loại)
b: \(\Leftrightarrow\dfrac{3\left(x-3\right)+2\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
=>3x-9+2x-4=x-1
=>5x-13=x-1
=>4x=12
=>x=3(loại)
c: =>x^2-2x+4+x^3+8=12
=>x^3+x^2-2x=0
=>x(x^2+x-2)=0
=>x(x+2)(x-1)=0
=>x=0 hoặc x=1
a. ĐKXĐ:...
\(\Leftrightarrow2\left(\dfrac{x^2}{4}+\dfrac{9}{x^2}\right)=13\left(\dfrac{x}{2}-\dfrac{3}{x}\right)\)
\(\Leftrightarrow2\left(\dfrac{x^2}{4}+\dfrac{9}{x^2}-3+3\right)=13\left(\dfrac{x}{2}-\dfrac{3}{x}\right)\)
\(\Leftrightarrow2\left(\dfrac{x}{2}-\dfrac{3}{x}\right)^2+6=13\left(\dfrac{x}{2}-\dfrac{3}{x}\right)\)
Đặt \(\dfrac{x}{2}-\dfrac{3}{x}=t\Rightarrow2t^2-13t+6=0\Rightarrow\left[{}\begin{matrix}t=6\\t=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}-\dfrac{3}{x}=6\\\dfrac{x}{2}-\dfrac{3}{x}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-12x-6=0\\x^2-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
\(\Leftrightarrow x\left(x-1\right)-\dfrac{x-1}{x^2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{x^2}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow x=1\)