Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHÚ Ý: ĐÂY KHÔNG PHẢI TOÁN 9 EM NHÉ!
pt <=> \(1-2sin^2x-sinx=0\Leftrightarrow\orbr{\begin{cases}sin=-1\\sin=\frac{1}{2}\end{cases}}\)
tới đây là pt dạng cơ bản chỉ áp dụng công thức em tự giải nốt
A,xem lại đề
B\(=sin^6x+cos^6x+3sin^2x.cos^2x\)
\(=\left(sin^2x\right)^3+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\left(cos^2x\right)^3\)
\(=\left(sin^2+cos^2x\right)^3\)
\(=1\)
a) Sửa đề: \(A=\cot48^0\cdot\cot42^0+\tan60^0\)
Ta có: \(A=\cot48^0\cdot\cot42^0+\tan60^0\)
\(=\cot48^0\cdot\tan48^0+\tan60^0\)
\(=1+\sqrt{3}\)
a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow x=30^o\)
b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)
\(\Leftrightarrow x=30^o\)
c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)
d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)
Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(
e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)
f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)
\(B=\dfrac{1-4\sin^2x\cdot\cos^2x}{\sin^2x+2\sin x\cdot\cos x+\cos^2}+2\sin x\cdot\cos x\\ B=\dfrac{1-4\sin^2x\cdot\cos^2x}{2\sin x\cdot\cos x}+2\sin x\cdot\cos x\\ B=\dfrac{1-4\sin^2x\cdot\cos^2x+4\sin^2x\cdot\cos^2x}{2\sin x\cdot\cos x}=\dfrac{1}{2\sin x\cdot\cos x}\)
ĐKXĐ: \(cosx\ne\frac{1}{2}\Rightarrow x\ne\pm\frac{\pi}{3}+k2\pi\)
\(cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+4sinx.cosx-2sinx}{2cosx-1}\)
\(\Leftrightarrow cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+2sinx\left(2cosx-1\right)}{2cosx-1}\)
\(\Leftrightarrow cos2x+\sqrt{3}+\sqrt{3}sinx=2sinx+1\)
\(\Leftrightarrow1-2sin^2x+\sqrt{3}\left(1+sinx\right)=2sinx+1\)
\(\Leftrightarrow2sin^2x+2sinx-\sqrt{3}\left(1+sinx\right)=0\)
\(\Leftrightarrow\left(2sinx-\sqrt{3}\right)\left(1+sinx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{3}+k2\pi\left(ktm\right)\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
a)\(\left(\sin x+\cos x\right)^2=\sin^2x+\cos^2x+2\sin x\cdot\cos x\)
\(=1+2\cdot\frac{1}{2}=1+1=2\)
\(\Rightarrow\sin x+\cos x=\sqrt{2}\)
b)\(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cdot\cos^2x\)
\(=1^2-2\cdot\frac{1}{2}^2=1-\frac{1}{2}=\frac{1}{2}\)
c)\(\left|\sin x-\cos x\right|^2=\left(\sin x-\cos x\right)^2=\sin^2x+\cos^2x-2\sin x\cdot\cos x=1-2\cdot\frac{1}{2}=1-1=0\)
\(\left|\sin x+\cos x\right|=0\)
Học cái viết đề đi b. Đọc không có ra
đề nè
\(\left(1+cosx\right)\cdot\left(1+4^{cosx}\right)=3\cdot4^{cosx}\)