\(12\sqrt{x}+\sqrt{x+1}=\frac{2}{\sqrt{x}}+\sqrt{169x-65}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

ĐKXĐ x>0

Chia cả 2 vế của pt cho \(\sqrt{x}\ne0\),ta được

\(12+\sqrt{\frac{x-1}{x}}=\frac{2}{x}+\sqrt{\frac{169x-65}{x}}\)

\(\Rightarrow12-\frac{2}{x}+\sqrt{1-\frac{1}{x}}=\sqrt{65\left(1-\frac{1}{x}\right)+104}\)(2)

Đặt \(\sqrt{1-\frac{1}{x}}=a\)(\(a\ge0\)),khi đó pt (1) trở thành

\(2a^2+10+a=\sqrt{65a^2+104}\)

\(\Leftrightarrow\left(2a^2+a+10\right)^2=65a^2+104\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+3a-1\right)=0\)

Đến đây bn tự giải tiếp nhé

20 tháng 10 2017

Trần Hữu Ngọc Minh xem tôi làm có đúng ko?

Giải:

a, \(\sqrt{2}.x-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}.x=\sqrt{50}\Leftrightarrow\sqrt{2}.x=\sqrt{25.2}\)

\(\Leftrightarrow\sqrt{2}.x=\sqrt{25}.\sqrt{2}\Leftrightarrow\sqrt{2}.x=5\sqrt{2}\)

\(\Leftrightarrow x=5\)

c, \(\sqrt{3}.x^2-\sqrt{12}=0\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{12}\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4.3}\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4}.\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}.x^2=2\sqrt{3}\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

d, \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)

\(\Leftrightarrow\frac{x^2}{\sqrt{5}}=\sqrt{20}\)

\(\Leftrightarrow x^2=\sqrt{5}.\sqrt{20}\)

\(\Leftrightarrow x^2=\sqrt{100}\)

\(\Leftrightarrow x=\pm10\)

20 tháng 10 2017

giỏi đấy

13 tháng 10 2019

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)

14 tháng 10 2019

\(\sqrt{12-\frac{3}{x^2}}=a\left(a\le\sqrt{12}\right);\sqrt{4x^2-\frac{3}{x^2}}=b\left(b\ge0\right)\)

ta có \(\hept{\begin{cases}a+b=4x^2\\b^2-a^2=4x^2-12\end{cases}}\)<=> \(\hept{\begin{cases}a+b=4x^2\\\left(b-a\right)\left(b+a\right)=4x^2-12\end{cases}< =>\hept{\begin{cases}a+b=4x^2\\b-a=\frac{4x^2-12}{4x^2}\end{cases}}}\)

<=> \(\hept{\begin{cases}b+a=4x^2\\b-a=1-\frac{3}{x^2}\end{cases}}< =>\hept{\begin{cases}b+a=4x^2\\2b=4x^2+1-\frac{3}{x^2}=b^2+1\end{cases}}\)<=> \(\hept{\begin{cases}b+a=4x^2\\\left(b-1\right)^2=0\end{cases}=>b=1}\)

=> 4x2-\(\frac{3}{x^2}=1=>4x^4-x^2-3=0< =>x^2=1\)=> x=1 hoặc x=-1

thay vào phương trình ban đầu  đều thỏa mãn => pt có 2 nghiệm x=1; x=-1

15 tháng 9 2020

Phương pháp giải như sau :  

Trước hết phải có ĐKXĐ là  \(x>1\)

Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\)        (1)

Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có

\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên

(1)   \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)

Kết luận:...        (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)

15 tháng 10 2019

dk \(\hept{\begin{cases}3x^2-1\ge0\\x^2-x\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{\sqrt{3}}\end{cases}}}\)(1)

\(< =>2\sqrt{6x^2-2}+2\sqrt{2x^2-2x}-2x\sqrt{2x^2+2}\)=7x2-x+4

<=> (3x2-1)-2\(\sqrt{2}.\sqrt{3x^2-1}\)+ 2 + (x2+1)+2x\(\sqrt{2}.\sqrt{x^2+1}\)+2x2 + (x2-x) - 2\(\sqrt{2}\sqrt{x^2-x}\)+2 =0

<=> \(\left(\sqrt{3x^2-1}-1\right)^2+\left(\sqrt{x^2+1}+x\sqrt{2}\right)^2\)+\(\left(\sqrt{x^2-x}-\sqrt{2}\right)^2=0\)

<=> \(\hept{\begin{cases}\sqrt{3x^2-1}=\sqrt{2}\\\sqrt{x^2+1}+x\sqrt{2}=0\\\sqrt{x^2-x}=\sqrt{2}\end{cases}}< =>\hept{\begin{cases}3x^2=3\\x^2+1=2x^2\left(x< 0\right)\\x^2-x-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x^2=1\\\left(x+1\right)\left(x-2\right)=0\end{cases}< =>x=-1}\) (thỏa mãn điều kiện (1)

vậy x=-1 là nghiệm

16 tháng 10 2018

ĐKXĐ: \(x>0\)

Ta có:

\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)

\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)

\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)

Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)

Khi đó pt đã cho trở thành:

\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Tương tự