K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

 đầu bài yêu cầu gì thế >?>

28 tháng 3 2017

<=>  (x+x +4)2 + 2 . 4x(x2+ x + 4) + (4x)2 = 0

<=>  ( x2 + x+ 4 +4x )2 = 0

<=>  [(x2 + x) + (4 +4x)]  =0

<=>  [x(x+1) + 4(1+x)]  =0

<=>  (x+1) + (x+4)  =0

  • x+1 = 0 <=> x= -1
  • x+4 = 0 <=> x= -4
16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

(x^2 +24+14x) (x^2+24+10x) =165x^2

Đặt t = x^2 + 24+12x

(t-2x)(t+2x) = 165x^2

t^2 - 4x^2 =165x^2

t^2 = 169x^2

t = 13x hay t = -13x

Nếu t = 13x thì 

x^2 +12x + 24= 13x

x^2 - x + 24 = 0 (Vô nghiệm vì vế trái > 0)

Nếu t = -13x thì:

x^2 +12x+24 = -13x

x^2 +25x +24=0

(x+1)(x+24) = 0

x + 1 =0 hay x+24 = 0

x = -1 hay x= -24

Vậy... 

Học tốt!

15 tháng 4 2021

Đặt x2 + 10x + 24 = y

pt đã cho trở thành ( y + 4x ).y - 165x2 = 0

<=> y2 + 4xy - 165x2 = 0

<=> y2 - 11xy + 15xy - 165x2 = 0

<=> y( y - 11x ) + 15x( y - 11x ) = 0

<=> ( y - 11x )( y + 15x ) = 0

=> ( x2 + 10x + 24 - 11x )( x2 + 10x + 24 + 15x ) = 0

<=> ( x2 - x + 24 )( x2 + 25x + 24 ) = 0

<=> ( x2 - x + 24 )( x2 + 24x + x + 24 ) = 0

<=> ( x2 - x + 24 )[ x( x + 24 ) + ( x + 24 ) ] = 0

<=> ( x2 - x + 24 )( x + 24 )( x + 1 ) = 0

Vì x2 - x + 24 > 0 ∀ x

nên pt <=> ( x + 24 )( x + 1 ) = 0 <=> x = -24 hoặc x = -1

Vậy ...

16 tháng 4 2021

Đặt t = \(x^2+14x+24\)

\(\Rightarrow\)\(t\left(t-4x\right)-165x^{^2}=0\)

\(\Leftrightarrow t^2-4xt-165x^2=0\)

\(\Leftrightarrow t^2+11xt-15xt-165x^2=0\)

\(\Leftrightarrow t\left(t+11x\right)-15x\left(t+11x\right)=0\)

\(\Leftrightarrow\left(t+11x\right)\left(t-15x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+11x=0\\t-15x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-11x\\t=15x\end{cases}}}\)

với t= -11x

\(\Rightarrow x^2+14x+24=-11x\)

\(\Leftrightarrow x^2+25x+24=0\)

\(\Leftrightarrow x^2+x+24x+24=0\)

\(\Leftrightarrow x\left(x+1\right)+24\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+24\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+24=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-24\end{cases}}}\)

với t=15x

\(\Rightarrow x^2+14x+24=15x\)

\(\Leftrightarrow x^2-x+24=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{95}{4}=0\)(Vô Lí)

vậy....

16 tháng 6 2023

\(\left(x^2+8x\right)+8\left(x^2+8x\right)=48\)

Đặt: \(u=x^2+8x\)

\(\Rightarrow u^2+8u=48\)

\(\Leftrightarrow u^2+8u-48=0\)

\(\Leftrightarrow u^2-4u+12u-48=0\)

\(\Leftrightarrow u\left(u-4\right)+12\left(u-4\right)=0\)

\(\Leftrightarrow\left(u+12\right)\left(u-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}u+12=0\Leftrightarrow u=-12\\u-4=0\Leftrightarrow u=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+8x=-12\\x^2+8x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+8x+12=0\\x^2+8x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4+2\sqrt{5}\\x=-4-2\sqrt{5}\\x=-2\\x=-6\end{matrix}\right.\)

16 tháng 6 2023

\(\Leftrightarrow x^4+16x^3+64x^2+8x^2+64x=48\\ \Leftrightarrow x^4+16x^3+72x^2+64x-48=0\\ \Leftrightarrow\left(x+2\right)\left(x+6\right)\left(x^2+8x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+6=0\\x^2+8x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\\x=-4\pm2\sqrt{5}\end{matrix}\right.\)

Vậy...

12 tháng 5 2022

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)

15 tháng 2 2020

\(a.\left(3-x\right)^2-12+4x=0\)

\(\Rightarrow\left(3-x\right)^2-4.\left(3-x\right)=0\)

\(\Rightarrow\left(3-x\right)\left(-x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\-x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

\(b.\left(4x-5\right)^2-2.\left(16x^2-25\right)=0\)

\(\Rightarrow\left(4x-5\right)^2-2.\left(4x+5\right).\left(4x-5\right)=0\)

\(\Rightarrow\left(4x-5\right)\left(4x-5-8x-10\right)=0\)

\(\Rightarrow\left(4x-5\right)\left(-4x-15\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4x-5=0\\-4x-15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}\)

15 tháng 2 2020

ths bn nh