\(x^2+3x-\frac{x+2}{\sqrt{2-x}}=10-\frac{x+2}{\sqrt{2-x}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

1/

ĐK:\(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\left(t\ge0\right)\)

\(\Leftrightarrow t^2=10-3x-4\sqrt{4-x^2}\)

\(\Leftrightarrow4\sqrt{4-x^2}=10-3x-t^2\)

PT\(\Leftrightarrow3t+10-3x-t^2=10-3x\)

\(\Leftrightarrow t^2-3t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\) (tm) => Giải x

13 tháng 12 2019

a, ĐK: \(6x^2-12x+7\ge0\) (*)

\(PT\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\6x^2-12x+7=x^4-4x^3+4x^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\x^4-4x^3-2x^2+12x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\\left(x-1\right)^2\left(x^2-2x-7\right)=0\end{matrix}\right.\) \(\Rightarrow x=1\pm2\sqrt{2}\) (thỏa mãn ĐK)

Vậy...