K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

(x2+1)2+3x(x2+1)+2x2=0

<=> x4+1+2x2+3x3+3x+2x2=0

<=> x4+3x3+4x2+3x+1=0

<=> x4+x3+2x3+2x2+2x2+2x+x+1=0

<=> (x+1)(x3+2x2+2x+1)=0

<=> (x+1)(x3+x2+x2+x+x+1)=0

<=> (x+1)2(x2+x+1)=0

<=> \(\left(x+1\right)^2\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]=0\)

\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

=> x + 1 = 0

=> x = -1

Vậy ...

3 tháng 9 2016

Ta có : \(\left(m^2-3m+2\right)x-m^2+m=0\)

\(\Leftrightarrow\left(m-1\right)\left(m-2\right)x=m\left(m-1\right)\)

Nếu \(m=1\) thì pt có dạng 0.x = 0 => pt có vô số nghiệm.

Nếu \(m=2\) thì pt có dạng 0.x = 2 => pt vô nghiệm.

Nếu \(m\ne1\) và \(m\ne2\) thì pt có nghiệm \(x=\frac{m}{m-2}\)

 

1 tháng 1 2017

sáng sớm lang thang lật lại mấy trang gặp bài này, xin trình bày vài cách:

Đk:\(x\ge2\) \(\left(DK\forall PP\right)\)

C1 \(pt\Leftrightarrow x^3-3x\left(x+2\right)-2\sqrt{\left(x+2\right)^3}=0\)

Đặt \(t=\sqrt{x+2}\) ra pt đăng cấp bậc 3...

c2:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2=\left(3\left(x+1\right)\right)^2\)

c3:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}-3x-2\right)\left(3x+\sqrt{\left(x+2\right)^3+4}\right)=0\)

C4:Chia 2 vế x3 dc:

\(1-\frac{3}{x}\pm2\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}-\frac{6}{x^2}=0\)

đặt \(\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}=t\) dc \(1\pm3t^2+2t^3=0\)

Ngoài ra còn có thể liên hợp ,.....

2 tháng 1 2017

cam on nha

15 tháng 8 2018

b , \(\sqrt{1-4x+4x^2}-3=0\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=3\)

\(\Leftrightarrow\left|1-2x\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=2\\-2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy nghiệm của phương trình là \(S=\left\{-1,2\right\}\)

17 tháng 3 2020

\(\left(x-2\right)\left(x^2-5x+4\right)=\left(x-2\right)\left(x^2-4x-x+4\right)=\left(x-2\right)\left(x-4\right)\left(x-1\right)< 0\)

khi đó có số số lẻ số <0

\(+,1\text{ số bé hơn 0}\Rightarrow x-4< 0;x-2>0\Leftrightarrow2< x< 4\)

\(+,3\text{ số bé hơn 0}\Rightarrow x-4< 0\Leftrightarrow x< 4\)

vậy 2<x<4 hoặc x<4

17 tháng 3 2020

TH1, x-2>0          ->x>2 (1)                           từ (1), (2) -> x>2  (*)

        x^2-5x+4<0   ->x(x-5)< -4 (2)

TH2, x-2<0 -> x<2  (3)                                                  Từ (3), (4) -> 2<x<5 -> x thuộc { 3;4} (**)

        x^2-5x+4 > 0 -> x(x-5) > -4  -> x> 5  (4)

                                                              Từ (*); (**) -> x>2

28 tháng 7 2018

bn giải theo cách thế là ra thôi

28 tháng 7 2018

có làm rồi bạn mà bị sai , thế kết quả vào nó không đúng ...

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Lời giải:
ĐK: \(x\geq \frac{-4}{3}\)

BPT \(\Leftrightarrow x^2+6x+13-2\sqrt{3x+4}-3\sqrt{5x+9}\leq 0\)

\(\Leftrightarrow x^2+x+2(x+2-\sqrt{3x+4})+3(x+3-\sqrt{5x+9})\leq 0\)

\(\Leftrightarrow x(x+1)+2.\frac{(x+2)^2-(3x+4)}{x+2+\sqrt{3x+4}}+3.\frac{(x+3)^2-(5x+9)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)+\frac{2x(x+1)}{x+2+\sqrt{3x+4}}+\frac{3x(x+1)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)\left[1+\frac{2}{x+2+\sqrt{3x+4}}+\frac{3}{x+3+\sqrt{5x+9}}\right]\leq 0\)

\(\Leftrightarrow x(x+1)\leq 0\)

\(\Leftrightarrow -1\leq x\leq 0\)

Kết hợp với ĐKXĐ suy ra nghiệm của BPT là tất cả các số thực thuộc đoạn \([-1;0]\)

12 tháng 3 2019

Trình bày đẹp :v công thức ko bung biêng