Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
ĐKXĐ: \(x\ge0\) Phương trình trên tương đương :
\(5\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)-2\left(x+\dfrac{1}{x}\right)-4=0\)
Đặt \(\sqrt{x}+\dfrac{1}{\sqrt{x}}=t\left(t\ge0\right)\)\(\Rightarrow t^2=x+\dfrac{1}{x}+2\)
Vậy phương trình trở thành:
\(5t-2\left(t^2-2\right)-4=0\)\(\Leftrightarrow2t^2-5t=0\)\(\Leftrightarrow t\left(2t-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=\dfrac{5}{2}\end{matrix}\right.\)
*Với \(t=0\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=0\Leftrightarrow x=-1\left(loai\right)\)
*Với \(t=\dfrac{5}{2}\)\(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=\dfrac{5}{2}\Leftrightarrow2x-5\sqrt{x}+2=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)Vậy phương trình có hau nghiệm phân biệt \(\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)
????
xin lỗi nha !
mình mới học lớp 3
mà bài này khó nắm
a: ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>1\end{matrix}\right.\Leftrightarrow x>=\dfrac{3}{2}\)
\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
=>\(\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>\(\dfrac{2x-3}{x-1}=4\)
=>4(x-1)=2x-3
=>4x-4=2x-3
=>4x-2x=-3+4
=>2x=1
=>\(x=\dfrac{1}{2}\left(loại\right)\)
b: ĐKXĐ: 2x+15>=0
=>x>=-15/2
\(x+\sqrt{2x+15}=0\)
=>\(\sqrt{2x+5}=-x\)
=>\(\left\{{}\begin{matrix}-x>=0\\\left(-x\right)^2=2x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\x^2-2x-5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left(x-1\right)^2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x-1=\sqrt{6}\\x-1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x=\sqrt{6}+1\left(loại\right)\\x=-\sqrt{6}+1\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)
ĐKXĐ: \(x\in R\)
\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)
=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)
=>x-2=0
=>x=2(nhận)
\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)
\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.
a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)
`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`
`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\)
`b)sqrt{x-3}/sqrt{2x+1}=2`
ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)
`<=>x>=3`
`pt<=>sqrt{x-3}=2sqrt{2x+1}`
`<=>x-3=8x+4`
`<=>7x=7`
`<=>x=1(l)`
`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`
`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`
`<=>|x-1|+|x-2|=3`
`**x>=2`
`pt<=>x-1+x-2=3`
`<=>2x=6`
`<=>x=3(tm)`
`**x<=1`
`pt<=>1-x+2-x=3`
`<=>3-x=3`
`<=>x=0(tm)`
`**1<=x<=2`
`pt<=>x-1+2-x=3`
`<=>=-1=3` vô lý
Vậy `S={0,3}`
1) Ta có: \(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x=-1\end{matrix}\right.\)
Vậy: (x,y)=(1;-1)
2) Ta có: \(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\)
\(=\dfrac{x+20+2\left(\sqrt{x}-2\right)-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+20+2\sqrt{x}-4-6\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
Ta có: \(\Delta=4m^2+4m-11\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow4m^2+4m-11>0\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=2m+5\end{matrix}\right.\)
Để phương trình có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+4m-11>0\\2m+3>0\\2m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \dfrac{-1-2\sqrt{3}}{2}\\m>\dfrac{-1+2\sqrt{3}}{2}\end{matrix}\right.\\m>-\dfrac{3}{2}\\m>-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{-1+2\sqrt{3}}{2}\)
Mặt khác: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)
\(\Rightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{16}{9}\) \(\Rightarrow\dfrac{2m+3+2\sqrt{2m+5}}{2m+5}=\dfrac{16}{9}\)
\(\Rightarrow18m+27+18\sqrt{2m+5}=32m+80\)
\(\Leftrightarrow14m-53=18\sqrt{2m+5}\)
\(\Rightarrow\) ...
Tự đặt điều kiện :v
\(\Leftrightarrow x^2\sqrt{x^2-4}+2x=0\)
Đặt \(\left(x;\sqrt{x^2-4}\right)=\left(a;b\right)\)
Phương trình đã cho tương đương với hệ
\(\left\{{}\begin{matrix}a^2b+2a=0\\b^2+4=a^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a\left(ab+2\right)=0\\a^2-b^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\ab+2=0\end{matrix}\right.\\a^2-b^2=4\end{matrix}\right.\)
Tự giải tiếp các TH
bạn giúp mk làm câu này được ko cấu trên mk ghi sai đề .
\(x+\dfrac{2x}{\sqrt{x^2-4}}=3\sqrt{5}\)