K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2020

ĐK : x\(\ge\)- 5

\(x^2-7x=6\sqrt{x+5}-30\)

<=> \(x^2-7x+30-6\sqrt{x+5}=0\)

<=> \(\left(x^2-8x+16\right)+\left(x+5-6\sqrt{x+5}+9\right)=0\)

<=> \(\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\)

<=> \(\orbr{\begin{cases}x-4=0\\\sqrt{x+5}-3=0\end{cases}}\)<=> x = 4

2 tháng 10 2021

\(7x+6\sqrt{x+5}=x^2+30\left(đk:x\ge-5\right)\)

\(\Leftrightarrow6\sqrt{x+5}=x^2-7x+30\)

Ta thấy 2 vế đều dương nên bình phương lên ta được:

\(36x+180=x^4+49x^2+900-14x^3+60x^2-420x\)

\(\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)

\(\Leftrightarrow x^3\left(x-4\right)-10x^2\left(x-4\right)+69x\left(x-4\right)-180\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-4\right)-6x\left(x-4\right)+45\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)

\(\Leftrightarrow x=4\left(tm\right)\) (do \(x^2-6x+45=\left(x^2-6x+9\right)+36=\left(x-3\right)^2+36\ge36>0\))

3 tháng 9 2020

\(ĐKXĐ:x\ge-5\)

Ta có : \(x^2-7x=6\sqrt{x+5}-30\)

\(\Leftrightarrow x^2-7x+30-6\sqrt{x+5}=0\)

\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x+5-6\sqrt{x+5}+9\right)=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(\sqrt{x+5}-3\right)^2=0\end{cases}\Leftrightarrow}x=4\) ( Thỏa mãn ĐKXĐ )

Vậy phương trình có nghiệm duy nhất \(x=4\)

7 tháng 10

cho mình hỏi dương 9 ở dòng 5 sao có v ạ

20 tháng 9 2015

b) ĐKXĐ: \(x\ge-5\) PT \(\Leftrightarrow x^2-7x+30=6\sqrt{x+5}\). Vì vế trái lớn hơn 0 (bạn tự chứng minh) nên bình phương 2 vế ta có;

\(x^4+49x^2+900-14x^3+60x^2-420x=36x+180\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)

Vì x2-6x+45 = (x-3)2+36 >0 nên (x-4)2=0  <=> x=4 (T/m). Vậy phương trình có nghiệm duy nhất x=4

 

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

7 tháng 8 2018

( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1) 
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ] 
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ] 
Đặt a = ( x + 1 ) ( x + 4 ) 
(1) <=> a = 5 căn ( a + 24 ) 
<=> a^2 = 25 ( a + 24 ) 
<=> a^2 - 25a - 600 = 0 
<=> a1 = 40 
a2 = -15 

với a = 40 ta có: 
( x + 1 ) ( x + 4 ) = 40 
<=> x^2 + 5x + 4 = 40 
<=> x^2 + 5x - 36 = 0 
<=> x = 4 và x = - 9 

với a = -15, ta có: 
( x + 1 ) ( x + 4 ) = -15 
<=> x^2 + 5x + 4 = -15 
<=> x^2 + 5x + 19 = 0 
delta < 0 => pt vô nghiệm 

Vậy s = { -9; 4}

7 tháng 6 2015

Điều kiện: 3x2 - 6x - 6 \(\ge\) 0 và 2 - x  \(\ge\) 0

pt <=> \(\sqrt{3x^2-6x-6}=3.\left(2-x\right)^2\sqrt{2-x}+\left(7x-19\right)\sqrt{2-x}\)

<=> \(\sqrt{3x^2-6x-6}=\left(3x^2-12x+12+7x-19\right)\sqrt{2-x}\)

<=> \(\sqrt{3x^2-6x-6}=\left(3x^2-5x-7\right)\sqrt{2-x}\) (1)

Đặt \(\sqrt{3x^2-6x-6}=a;\sqrt{2-x}=b;\left(a;b\ge0\right)\)

=> \(3x^2-6x-6=a^2;2-x=b^2\)=> \(a^2-b^2=3x^2-5x-8\) 

=> (1) trở thành: a = (a2 - b2 + 1).b

<=> a = (a- b)(a+b).b + b

<=> (a - b) - (a- b)(a+b).b = 0

<=> (a - b).(1 - b(a+b)) = 0

<=> a = b  hoặc (a+b).b = 1

+) a = b => ......

+) (a+b).b = 1 <=> ab + b2 - 1 = 0

<=> \(\sqrt{3x^2-3x-6}.\sqrt{2-x}+\left(2-x\right)-1=0\)

<=> \(\sqrt{3\left(x^2-x-2\right)\left(2-x\right)}=x-1\)

<=> x \(\ge\) 1; 3(x2 - x - 2)(2 - x) = (x-1)2

<=> ........