K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

ta có :x^2 - 5x - 2√3x + 12 = 0 ĐKXĐ x> hoăc =0

<=> (x^2 - 6x+9)+(x - 2√3x + 3) = 0

<=> (x-3)2 + (căn x - căn 3 ) 2 =0

<=> x-3=0 và căn x = căn 3

( vì (x-3)2 > hoăc = 0 ; (căn x - căn 3 ) 2 > hoăc = 0 mà (x-3)2 + (căn x - căn 3 ) 2 =0 )

<=> x=3 ( TMĐK )

Vậy x=3

6 tháng 7 2016

\(x^3-2x^2-2x+3=0\)

\(\Leftrightarrow x^3-x^2-x^2+x-3x+3=0\)

\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(x-1\right)=0\)

...

17 tháng 5 2016

a) đenta phẩy=m^2-m^2+1>0

=>.........................

12 tháng 10 2020

ĐKXĐ: \(x\ge\frac{1}{3}\)

\(x^2+5x=x\sqrt{3x-1}+\left(x+1\right)\sqrt{5x}\)

\(\Leftrightarrow2x^2+10x-2x\sqrt{3x-1}-2\left(x+1\right)\sqrt{5x}=0\)

\(\Leftrightarrow\left(x^2-2x\sqrt{3x-1}+3x-1\right)+\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{5x}+5x\right]=0\)\(\Leftrightarrow\left(x-\sqrt{3x-1}\right)^2+\left(x+1-\sqrt{5x}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\sqrt{3x-1}=0\\x+1-\sqrt{5x}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3x-1}\\x+1=\sqrt{5x}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3x-1\\\left(x+1\right)^2=5x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1=0\\x^2-3x+1=0\end{matrix}\right.\Leftrightarrow x=\frac{3\pm\sqrt{5}}{2}\left(tm\right)\)

12 tháng 10 2020

oh my god, you so so so handsome

20 tháng 9 2017

học lớp 6 mà đã phải giải bài phương trình khó thế này khổ nha 

ta đặt \(\sqrt[3]{7x+1}=a;-\sqrt[3]{x^2-x-8}=b;\sqrt[3]{x^2-8x-1}=c\)

ta có \(a^3+b^3+c^3=7x+1-x^2+x+8+x^2-8x-1=8\)

từ phương trình ta có \(a+b+c=2\Rightarrow\left(a+b+c\right)^3=8\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=8\)

=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

tự thay vào và giải tiếp nhé hình như làm 3 trương hợp thì phải

23 tháng 3 2018

\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)

\(\Rightarrow\sqrt[3]{7x+1}+\sqrt[3]{x^2-8x-1}=2+\sqrt[3]{x^2-x-8}\)

Lập phương 2 vế lên ta được: \(\left(7x+1\right)\left(x^2-8x-1\right)=8\left(x^2-8x-8\right)\)

\(\Rightarrow\left(x-9\right)\left(x-1\right)\left(x+1\right)=0\)

\(2.10x^2+3x+1=\left(1+6x\right)\sqrt{x^2+3}\)

\(\Rightarrow x^2+3-\left(1+6x\right)\sqrt{x^2+3}+9x^2+3x-2=0\)

Nghiệm hơi xấu :(

15 tháng 9 2018

TA CÓ:

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)

\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)

15 tháng 9 2018

ĐKXĐ: \(x\ge1\)

PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\) 

     (=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=)  \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)

13 tháng 5 2019

Ta có \(ax^2+bx+c=0\)   vô nghiệm

=> \(\Delta=b^2-4ac< 0\)

=> \(b^2< 4ac\)=> c>0

MÀ \(4ac\le\frac{\left(4a+c\right)^2}{4}\left(hđt\right)\)

=> \(\left(4a+c\right)^2>4b^2\)

Lại có a,b,c>0

=> \(4a+c>2b\)

=> \(a+b+c>3\left(b-a\right)\)=> \(\frac{a+b+c}{b-a}>3\left(đpcm\right)\)

15 tháng 5 2019

Cho mình hỏi chỗ hđt là sao thế?