Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{4}{x-8+\frac{7}{x}}+\frac{5}{x-10+\frac{7}{x}}=-1\)
Đặt \(x-10+\frac{7}{x}=a\)
\(\frac{4}{a+2}+\frac{5}{a}=-1\)
\(\Leftrightarrow4a+5\left(a+2\right)=-a\left(a+2\right)\)
\(\Leftrightarrow a^2+11a+10=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-10+\frac{7}{x}=-1\\x-10+\frac{7}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-9x+7=0\\x^2+7=0\end{matrix}\right.\)
Thay `k=0` vào pt ta có:
`9x^2-25-0-0=0`
`<=>9x^2=25`
`<=>x^2=25/9`
`<=>x=+-5/3`
`b)x=-1` làm nghiệm nên ta thay `x=-1` vào pt thì pt =0
`=>9.1-25-k^2-2k(-1)=0`
`<=>-16-k^2+2k=0`
`<=>k^2-2k+16=0`
`<=>(k-1)^2+15=0` vô lý
Vậy khong có giá trị của k thỏa mãn đề bài
\(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)=> \(\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)=>\(\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\) => \(\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)\)
=> \(x^2-10x-2000=0\)
Tự giải ra nhé hi hi
Lời giải:
\((x^2-1)(x^2-25)=25x^2\)
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)
\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)
\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)
\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)
Lời giải:
\((x^2-1)(x^2-25)=25x^2\)
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)
\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)
\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)
\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow x^2=\frac{51\pm\sqrt{2501}}{2}\Rightarrow x=\pm\sqrt{\frac{51\pm\sqrt{2501}}{2}}\)
1)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right).\left(x+2\right)\left(x+4\right)-40=0\)
\(\Leftrightarrow\left(x^2+6x+5\right).\left(x^2+6x+8\right)-40=0\)
Đặt \(a=x^2+6x+6\) ta có:
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)-40=0\)
\(\Leftrightarrow a^2+a-2-40=0\)
\(\Leftrightarrow a^2-6x+7x-42=0\)
\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+6=6\\x^2+6x+6=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
(\(x^2+6x+13=\left(x+3\right)^2+4>0\left(loại\right)\))
Vậy.................
3)
\(\left|x+4\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=3-2x\\x+4=-3+2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=7\end{matrix}\right.\)
Vậy..........