K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Ngu quá có thế cũng không làm được

3 tháng 10 2021

d) \(x^2+y^2-4x+4y=1\\ \Rightarrow\left(x-2\right)^2+\left(y+2\right)^2=8\)

\(\Rightarrow8=\left(x-2\right)^2+\left(y+2\right)^2\ge\left(x-2\right)^2\)

\(\Rightarrow\left(x-2\right)^2\le8\)

Mà \(\left(x-2\right)^2\) là SCP và là số chẵn nên \(\left(x-2\right)^2\in\left\{0;4\right\}\)

Th1: \(\left(x-2\right)^2=0\Rightarrow\left(y+2\right)^2=8\left(vôlí\right)\)

Th2: \(\left(x-2\right)^2=4\Rightarrow\left(y+2\right)^2=4\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-2\\y+2=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=2\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(0;-4\right);\left(0;0\right);\left(4;-4\right);\left(4;0\right)\right\}\)

 

24 tháng 8 2020

x4 - 2y2 = 1 => x4 - 1 = 2y( 1 )

Dễ thấy : x lẻ \(x^4\equiv1\) ( mod 4 )

=> y2 chẵn => y chẵn

Đặt \(x=2k+1;y=2n\left(k;n\in Z\right)\). Ta có :

\(\left(4k^2+4k+1\right)^2-1=8n^2\)

\(\Leftrightarrow\left(4k^2+4k+2\right)\left(4k^2+4k\right)=8n^2\)

\(\Leftrightarrow\left(2k^2+2k+1\right)\left(k^2+k\right)=n^2\)

Với k = 0 thì \(y=0\) ( tm )

Thay y = 0 vào ( 1 ) ta được \(x=\pm1\) ( tm )

Với \(k\ge1\)

Đặt \(k^2+k=m\)

\(\Rightarrow\left(2m+1\right)m=n^2\)

=> m ; 2m + 1 là SCP

Ta lại có : \(k^2< k^2+k< \left(k+1\right)^2\) 

Vì k2 + k kẹp giữa 2 SCP liên tiếp nên k2 + k không thể là SCP

Vậy pt có các nghiệm ( x ; y ) là : ( 1 ; 0 ) ; ( - 1 ; 0 ) 

24 tháng 8 2020

Tohru ( ʚ๖ۣۜTεαм ๖ۣۜFℓαʂɦɞ )  làm vậy có dài không bạn?

\(x^4-2y^2=1\Leftrightarrow x^4=1+2y^2\)

Do \(\hept{\begin{cases}x^4\ge0\forall x\\2y^2\ge0\forall y\end{cases}}\)

Để x,y nguyên => \(\hept{\begin{cases}x^4=1\\2y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)

5 tháng 10 2021

a, TK:

(x lẻ do \(2y^2-8y+3=2\left(y^2-4y\right)+3=x^2\) lẻ)

\(b,\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=9\\ \Leftrightarrow\left(x-2\right)^2+\left(y+2\right)^2=9\)

Vậy pt vô nghiệm do 9 ko phải tổng 2 số chính phương

 

3 tháng 10 2021

a. 3x2 - 4y2 = 18

<=> \(\left\{{}\begin{matrix}3x^2=18+4y^2\\4y^2=-\left(3x^2-18\right)\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{18+4y^2}{3}}\\y=\sqrt{\dfrac{-3x^2+18}{4}}\end{matrix}\right.\)

b, c, d tương tự nhé

3 tháng 10 2021

b. 19x2 + 28y2 = 2001

<=> \(\left\{{}\begin{matrix}19x^2=2001-28y^2\\28y^2=2001-19x^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{2001-28y^2}{19}}\\y=\sqrt{\dfrac{2001-19x^2}{28}}\end{matrix}\right.\)

c. x2 = 2y2 - 8y + 3

<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\8y=2y^2+3-x^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\y=\dfrac{2y^2+3-x^2}{8}\end{matrix}\right.\)

d. x2 + y2 - 4x + 4y = 1

<=> \(\left\{{}\begin{matrix}x^2=1-y^2+4x-4y\\y^2=1-x^2+4x-4y\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{1-y^2+4x-4y}\\y=\sqrt{1-x^2+4x-4y}\end{matrix}\right.\)

NV
5 tháng 3 2023

\(x^2+2z+y^2-2x+z^2-2y+3=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)

Do \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y;z\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\z-1=0\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)