K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2020

\(\Leftrightarrow x^2-4x+13-\sqrt{x^2-4x+13}-6=0\)

Đặt \(\sqrt{x^2-4x+13}=t>0\)

\(\Rightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4x+13}=3\)

\(\Leftrightarrow x^2-4x+13=9\)

\(\Leftrightarrow x^2-4x+4=0\Rightarrow x=2\)

9 tháng 2 2023

Đặt \(t=\sqrt{10-x}+\sqrt{x-7}\) để làm gì vậy bạn? Đặt như vậy thì phương trình sẽ càng khó giải hơn á

Đk: \(-7\le x\le10\)

\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)

\(\Leftrightarrow\sqrt{10-x}-\sqrt{x+7}+\sqrt{\left(10-x\right)\left(x+7\right)}=1\)

\(\Leftrightarrow\sqrt{10-x}\left(\sqrt{x+7}+1\right)-\left(\sqrt{x+7} +1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}+1\right)\left(\sqrt{10-x}-1\right)=0\)

Dễ thấy \(\sqrt{x+7}+1>0\). Do đó:

\(\sqrt{10-x}-1=0\Leftrightarrow x=9\left(nhận\right)\)

Thử lại ta có x=9 là nghiệm duy nhất của pt đã cho.

9 tháng 2 2023

`\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1`     `ĐK: -7 <= x <= 10`

Đặt `\sqrt{10-x}-\sqrt{x+7}=t`

`<=>10-x+x+7-2\sqrt{(x+7)(10-x)}=t^2`

`<=>\sqrt{-x^2+3x+70}=17/2-[t^2]/2`

Khi đó ptr `(1)` có dạng: `t+17/2-[t^2]/2=1`

`<=>2t+17-t^2=2`

`<=>t^2-2t-15=0`

`<=>[(t=5),(t=-3):}`

`@t=5=>\sqrt{-x^2+3x+70}=17/2-5^2/2`

  `<=>\sqrt{-x^2+3x+70}=-4` (Vô lí)

`@t=-3=>\sqrt{-x^2+3x+70}=17/2-[(-3)^2]/2`

  `<=>-x^2+3x+70=16`

  `<=>[(x=9),(x=-6):}` (t/m)

Vậy `S={-6;9}`

24 tháng 12 2021

b: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1-x-11=0\\x< =1\end{matrix}\right.\Leftrightarrow x=-2\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

1/ ĐKXĐ: $4x^2-4x-11\geq 0$

PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$

$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)

$\Leftrightarrow 2a^2-a-6=0$

$\Leftrightarrow (a-2)(2a+3)=0$

Vì $a\geq 0$ nên $a=2$

$\Leftrightarrow \sqrt{4x^2-4x-11}=2$

$\Leftrightarrow 4x^2-4x-11=4$

$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$

$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

2/ ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$

$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)

$\Leftrightarrow a^2-3a-14=0$

$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)

$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

22 tháng 12 2016

khó lắm

23 tháng 12 2016

Khó mới hỏi. Làm dùm với

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Bình phương hai vế ta được:

\(\begin{array}{l}3{x^2} - 4x + 1 = {x^2} + x - 1\\ \Leftrightarrow 2{x^2} - 5x + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay lần lượt 2 giá trị \(x = 2\) và \(x = \frac{1}{2}\) vào \({x^2} + x - 1 \ge 0\) ta thấy chỉ có \(x = 2\) thỏa mãn bất phương trình.

Vậy nghiệm của phương trình đã cho là \(x = 2\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \)

\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)

\( \Rightarrow x =  - \frac{1}{4}\) và \(x = \frac{5}{2}\)

Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình

Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)

b) \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)

\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)

\( \Rightarrow x =  - 3\) và \(x = 4\)

Thay vào phương trình \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)  ta thấy  không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

c) \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \)

\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)

\( \Rightarrow x =  - 1\) và \(x = 3\)

Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình

Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) là \(x =  - 1\) và \(x = 3\)

d) \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\)

\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1}  = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)

\( \Rightarrow x =  - 4\) và \(x = \frac{1}{2}\)

Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\) ta thấy chỉ có nghiệm \(x =  - 4\) thỏa mãn phương trình

Vậy nghiệm của phương trình trên là \(x =  - 4\)

a: 

ĐKXĐ: x>=5/2

\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)

=>\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\cdot\sqrt{2x-5}}=14\)

=>\(\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

=>\(\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)

=>\(2\sqrt{2x-5}+4=14\)

=>\(\sqrt{2x-5}=5\)

=>2x-5=25

=>2x=30

=>x=15

b: \(x^2-4x=\sqrt{x+2}\)

=>\(x+2=\left(x^2-4x\right)^2\) và x^2-4x>=0

=>x^4-8x^3+16x^2-x-2=0 và x^2-4x>=0

=>(x^2-5x+2)(x^2-3x-1)=0 và x^2-4x>=0

=>\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\)