\(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\).

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2022

\(3x-2=\sqrt[]{x^2+15}-\sqrt[]{x^2+8}=\dfrac{7}{\sqrt[]{x^2+15}+\sqrt[]{x^2+8}}>0\)

\(\Rightarrow x>\dfrac{2}{3}\)

\(\sqrt[]{x^2+15}-4=3x-3+\sqrt[]{x^2+8}-3\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt[]{x^2+15}+4}=3\left(x-1\right)+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt[]{x^2+8}+3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{x+1}{\sqrt[]{x^2+15}+4}=3+\dfrac{x+1}{\sqrt[]{x^2+8}+3}\left(1\right)\end{matrix}\right.\)

Do \(x>\dfrac{2}{3}\Rightarrow x+1>0\Rightarrow\dfrac{x+1}{\sqrt[]{x^2+15}+4}< \dfrac{x+1}{\sqrt[]{x^2+8}+3}\)

\(\Rightarrow\) (1) vô nghiệm hay pt có nghiệm duy nhất \(x=1\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

20 tháng 10 2017

\(\sqrt{x^2+16}-\sqrt{x^2+7}=3x-8\)

\(\Leftrightarrow\left(\sqrt{x^2+16}-5\right)+\left(4-\sqrt{x^2+7}\right)=3x-9\)

\(\Leftrightarrow\frac{x^2-9}{\sqrt{x^2+16}+5}+\frac{9-x^2}{\sqrt{x^2+7}+4}=3\left(x-3\right)\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{x+3}{\sqrt{x^2+16}+5}-\frac{x+3}{\sqrt{x^2+7}+4}-3\right)=0\)

\(\Leftrightarrow x=3\)

4 tháng 10 2016

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

4 tháng 10 2016

Một bài làm rất hay !

14 tháng 7 2017

\(\sqrt{x+8}=\sqrt{3x+2}+\sqrt{x+3}\) dkxd \(\left\{{}\begin{matrix}x\ge-8\\x\ge\\x\ge-\dfrac{2}{3}\end{matrix}\right.-3\)=>x\(\ge\)\(\dfrac{-2}{3}\)

\(x+8=3x+2+x+3+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8=4x+5+2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(x+8-4x-5=2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

-3x+3=\(2\sqrt{\left(3x+2\right)\left(x+3\right)}\)

\(\left\{{}\begin{matrix}-3\left(x-3\right)\ge0\\\left(-3x+3\right)^2=4.\left(3x+2\right)\left(x+3\right)\end{matrix}\right.\)

Chắc tới đây bạn làm đc rồi nhỉ

3 tháng 12 2019

\(PT\Leftrightarrow\sqrt{x^2+8}-\sqrt{x^2+3}=3x-2\)

Dễ thấy VT > 0 do đó VP > 0 \(\Leftrightarrow x>\frac{2}{3}\)

\(PT\Leftrightarrow3x-3+\sqrt{x^2+3}-2+3-\sqrt{x^2+8}=0\)

\(\Leftrightarrow\left(x-1\right)\left[3+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}-\frac{\left(x+1\right)}{\sqrt{x^2+8}+3}\right]=0\)

Cái ngoặc to vô nghiệm vì: \(\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}-\frac{\left(x+1\right)}{\sqrt{x^2+8}+3}=\frac{\left(x+1\right)\left(\sqrt{x^2+8}-\sqrt{x^2+3}+1\right)}{\left(\sqrt{x^2+3}+2\right)\left(\sqrt{x^2+8}+3\right)}>0\forall x>\frac{2}{3}\)

Vậy x = 1

2 tháng 12 2019

Câu trả lời :