K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

Ta có : \(\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}=\dfrac{2x+93}{7}+\dfrac{2x+94}{6}+\dfrac{2x+95}{5}\)

\(\Leftrightarrow\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}-\dfrac{2x+93}{7}-\dfrac{2x+94}{6}-\dfrac{2x+95}{5}=0\)

\(\Leftrightarrow\dfrac{2x+5}{95}+1+\dfrac{2x+6}{94}+1+\dfrac{2x+7}{93}+1-\dfrac{2x+93}{7}-1-\dfrac{2x+94}{6}-1-\dfrac{2x+95}{5}-1=0\)

\(\Leftrightarrow\dfrac{2x+100}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}-\dfrac{2x+100}{7}-\dfrac{2x+100}{6}-\dfrac{2x+100}{5}=0\)

\(\Leftrightarrow\left(2x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\right)=0\)

Thấy : \(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\ne0\)

\(\Rightarrow2x+100=0\)

\(\Leftrightarrow x=-50\)

Vậy ...

 

 

 

 

 

 

9 tháng 2 2021

 -1 ở đâu vậy bạn,giải thích hộ mik đc ko

 

18 tháng 1 2018

a,\(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

<=> \(\dfrac{2-x}{2001}-1+2=\dfrac{1-x}{2002}-\dfrac{x}{2003}+2\)

<=>\(\dfrac{2-x}{2001}+1=\left(\dfrac{1-x}{2002}+1\right)+\left(\dfrac{-x}{2003}+1\right)\)

<=>\(\dfrac{2003-x}{2001}=\dfrac{2003-x}{2002}+\dfrac{2003-x}{2003}\)

<=>\(\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

<=> \(\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)

=> \(2003-x=0\)

=> \(x=2003\)

Vậy : S = \(\left\{2003\right\}\)

b, \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}+\dfrac{2x-5}{95}=\dfrac{2x-6}{94}\)

<=> \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}=\dfrac{2x-6}{94}-\dfrac{2x-5}{95}\)

<=> \(\dfrac{2x-3}{97}-\dfrac{2x-4}{96}-2=\dfrac{2x-6}{94}-\dfrac{2x-5}{95}-2\)

<=> \(\left(\dfrac{2x-3}{97}-1\right)-\left(\dfrac{2x-4}{96}-1\right)=\left(\dfrac{2x-6}{94}-1\right)-\left(\dfrac{2x-5}{95}-1\right)\)

<=>\(\dfrac{2x-100}{97}-\dfrac{2x-100}{96}=\dfrac{2x-100}{94}-\dfrac{2x-100}{95}\)

<=> \(\dfrac{2x-100}{97}-\dfrac{2x-100}{96}-\dfrac{2x-100}{94}+\dfrac{2x-100}{95}=0\)

<=> \(\left(2x-100\right)\left(\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{94}+\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{94}+\dfrac{1}{95}\ne0\)

=>\(2x-100=0\)

=> \(2x=100\)

=>\(x=50\)

Vậy: S=\(\left\{50\right\}\)

18 tháng 1 2018

Các bạn tick nhiều cho mình nha!

okokok

31 tháng 12 2022

a: \(\Leftrightarrow4x+4+9\left(2x+1\right)=2\left(5x+3\right)+12x+7\)

=>4x+4+18x+9=10x+6+12x+7

=>22x+13=22x+13(luôn đúng)

b: \(\Leftrightarrow\left(\dfrac{x+1}{94}+1\right)+\left(\dfrac{x+2}{93}+1\right)+\left(\dfrac{x+3}{92}+1\right)=\left(\dfrac{x+4}{91}+1\right)+\left(\dfrac{x+5}{90}+1\right)+\left(\dfrac{x+6}{89}+1\right)\)

=>x+95=0

=>x=-95

28 tháng 12 2017

4.

\(\dfrac{x+1}{99}+\dfrac{x+3}{97}+\dfrac{x+5}{95}=\dfrac{x+7}{93}+\dfrac{x+9}{91}+\dfrac{x+11}{89}\\ \Rightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+5}{95}+1\right)=\left(\dfrac{x+7}{93}+1\right)+\left(\dfrac{x+9}{91}+1\right)+\left(\dfrac{x+11}{89}+1\right)\\ \Rightarrow\dfrac{x+100}{99}+\dfrac{x+100}{97}++\dfrac{x+100}{95}=\dfrac{x+100}{93}+\dfrac{x+100}{91}+\dfrac{x+100}{89}\\ \Rightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}-\dfrac{1}{93}-\dfrac{1}{91}-\dfrac{1}{89}\right)=0\\ \Leftrightarrow x+100=0\Leftrightarrow x=-100\)

29 tháng 12 2017

\(\text{1) }\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}=\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\\ \Leftrightarrow\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\cdot24=\left[\dfrac{\left(x-4\right)^2}{6}+\dfrac{\left(x-2\right)^2}{3}\right]24\\ \Leftrightarrow3\left(4x^2-9\right)=4\left(x^2-8x+16\right)+8\left(x^2-4x+4\right)\\ \Leftrightarrow12x^2-27=4x^2-32x+64+8x^2-32x+32\\ \Leftrightarrow12x^2-27=12x^2-64x+96\\ \Leftrightarrow12x^2-12x^2+64x=96+27\\ \Leftrightarrow64x=123\\ \Leftrightarrow x=\dfrac{123}{64}\\ \text{Vậy }S=\left\{\dfrac{123}{64}\right\}\\ \)

\(\text{2) }x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}=\dfrac{7x-\dfrac{x-3}{2}}{5}\\ \Leftrightarrow\left(x+2-\dfrac{2x-\dfrac{2x-5}{6}}{15}\right)15=\dfrac{7x-\dfrac{x-3}{2}}{5}\cdot15\\ \Leftrightarrow15x+30-2x-\dfrac{2x-5}{6}=21x-\dfrac{3x-9}{2}\\ \Leftrightarrow15x-2x-\dfrac{2x-5}{6}-21x+\dfrac{3x-9}{2}=-30\\ \Leftrightarrow-8x-\dfrac{2x-5}{6}+\dfrac{3x-9}{2}=-30\\ \Leftrightarrow\left(-8x-\dfrac{2x-5}{6}+\dfrac{3x-9}{2}\right)6=-30\cdot6\\ \Leftrightarrow-48x-2x+5+9x-27=-180\\ \Leftrightarrow-41x==-158\\ \Leftrightarrow x=\dfrac{158}{41}\\ \text{Vậy }S=\left\{\dfrac{158}{41}\right\}\)

\(\text{3) }1-\dfrac{x-\dfrac{1+x}{3}}{3}=\dfrac{x}{2}-\dfrac{2x-\dfrac{10-7}{3}}{2}\\ \Leftrightarrow\left(1-\dfrac{x-1-x}{3}\right)6=\left(\dfrac{x}{2}-\dfrac{2x-1}{2}\right)6\\ \Leftrightarrow6+2=-3x+3\\ \Leftrightarrow-3x=8-3\\ \Leftrightarrow-3x=5\\ \Leftrightarrow x=-\dfrac{5}{3}\\ \\ \text{Vậy }S=\left\{-\dfrac{5}{3}\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2019

Bài 1:
\(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)

\(\Leftrightarrow \frac{99-x}{101}+1+\frac{97-x}{103}+1+\frac{95-x}{105}+1+\frac{93-x}{107}+1=0\)

\(\Leftrightarrow \frac{99-x+101}{101}+\frac{97-x+103}{103}+\frac{95-x+105}{105}+\frac{93-x+107}{107}=0\)

\(\Leftrightarrow \frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)

\(\Leftrightarrow (200-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)

\(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\neq 0\) nên suy ra \(200-x=0\Rightarrow x=200\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2019

Bài 2:

\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+116}{4}=0\)

\(\Leftrightarrow \frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)

\(\Leftrightarrow \frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)

\(\Leftrightarrow (x+100)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)

\(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\neq 0\). Do đó \(x+100=0\Rightarrow x=-100\)

11 tháng 3 2021

1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)

\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)

\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)

\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))

\(\Leftrightarrow x=-36\).

Vậy nghiệm của pt là x = -36.

17 tháng 7 2024

2) x(x+1)(x+2)(x+3)= 24

⇔ x.(x+3)  .   (x+2).(x+1)  = 24

⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24

Đặt \(x^2\)+ 3x = b

⇒ b . (b+2)= 24

Hay: \(b^2\) +2b = 24

\(b^2\) + 2b + 1 = 25

\(\left(b+1\right)^2\)= 25

+ Xét b+1 = 5 ⇒ b=4 ⇒  \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0

⇒(x-1)(x+4)=0⇒x=1 và x=-4

+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0

\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\)  Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)

⇒x= 1 và x= 4

31 tháng 1 2018

Mở đầu về phương trìnhMở đầu về phương trình

31 tháng 1 2018

Giáo án hả :v Nhìn quen quenn :v