K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Bạn lập bản xét dấu rồi giải

\(\Leftrightarrow\left|3x^2+x-4\right|=x^2+2-x^2-x-1=1-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x< =1\\3x^2+x-4=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< =1\\2x^2+3x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< =1\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)

NV
25 tháng 3 2019

Câu 1:

a/ \(x\ge-11\)

Đặt \(\sqrt{x+11}=a\ge0\Rightarrow11=a^2-x\), pt đã cho trở thành:

\(x^2+a=a^2-x\Leftrightarrow x^2-a^2+x+a=0\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

TH1: \(x+a=0\Leftrightarrow x+\sqrt{x+11}=0\Leftrightarrow-x=\sqrt{x+11}\)

\(\Leftrightarrow\left[{}\begin{matrix}-x\ge0\\x^2=x+11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^2-x-11=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-3\sqrt{5}}{2}\)

TH2: \(x-a+1=0\Leftrightarrow x+1=\sqrt{x+11}\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\\left(x+1\right)^2=x+11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-10=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{41}}{2}\)

b/ \(\sqrt{9+x}=x-9\Leftrightarrow\left\{{}\begin{matrix}x-9\ge0\\9+x=\left(x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x^2-19x+72=0\end{matrix}\right.\) \(\Rightarrow x=\frac{19+\sqrt{73}}{2}\)

NV
25 tháng 3 2019

Câu 2:

a/

\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-1\right)\left(x-4\right)}=\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-4\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -1\\x>4\\1< x< 3\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-1< x< 1\\3< x< 4\end{matrix}\right.\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f\left(x\right)\) ko xác định tại \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

b/ \(h\left(x\right)=\frac{-x^2+3x-1}{\left(x^2-2x+3\right)\left(x+2\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -2\\\frac{3-\sqrt{5}}{2}< x< \frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-2< x< \frac{3-\sqrt{5}}{2}\\x>\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)=0\) tại \(x=\frac{3\pm\sqrt{5}}{2}\)

\(f\left(x\right)\) ko xác định tại \(x=-2\)

NV
17 tháng 9 2019

a/ ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)

\(\Leftrightarrow x^2+2x-15=x^2-9\)

\(\Leftrightarrow2x=6\Rightarrow x=3\) (ktm)

Vậy pt vô nghiệm

b/ ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{x^2+x+1}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow x^2+x+1+2\left(x-1\right)=3x^2\)

\(\Leftrightarrow2x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\frac{1}{2}\end{matrix}\right.\)

c/ ĐKXĐ: \(x\ne\pm4\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{\left(x-4\right)\left(x+4\right)}+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow5x^2-80+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2+16=5x^2+2x\)

\(\Rightarrow x=8\)

23 tháng 3 2020
https://i.imgur.com/SmYpZ8d.jpg
23 tháng 3 2020
https://i.imgur.com/D95iizc.jpg
15 tháng 3 2020

a/ ĐKXĐ:...

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\left|\frac{x-2}{x-1}\right|-3=0\)

\(\Leftrightarrow\left|\frac{x-2}{x-1}\right|^2+2\left|\frac{x-2}{x-1}\right|-3=0\)

Đặt \(\left|\frac{x-2}{x-1}\right|=t\left(t\ge0\right)\)

\(\Rightarrow pt\Leftrightarrow t^2+2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

Ok tự giải nốt

b/ viết lại đề bài đi cậu