Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,` \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
`<=> (5(5x+2))/30 - (10(8x-1))/30 = (6(4x+2))/30 - (5.30)/30`
`<=> 5(5x+2) - 10(8x-1) =6(4x+2) - 5.30`
`<=> 25x + 10 - 80x + 10 = 24x+12 - 150`
`<=> -55x +20 = 24x-138`
`<=> -55x -24x=-138-20`
`<=>-79x=-158`
`<=> x=2`
Vậy pt có nghiệm `x=2`
`b,` \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)
Ta có : `(x+2)/(x-2) -1/x = 2/(x(x-2))`
`<=> (x(x+2))/(x(x-2)) - (x-2)/(x(x-2)) = 2/(x(x-2))`
`=> x^2 +2x - x +2 = 2`
`<=> x^2 + x =0`
`<=>x(x+1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-1\end{matrix}\right.\)
Vậy pt có nghiệm `x=-1`
`c,2x^3 + 6x^2 =x^2 +3x`
`<=> 2x^3 + 6x^2 -x^2 -3x=0`
`<=> 2x^3 + 5x^2 -3x=0`
`->` Đề có sai ko ạ ?
`d,` \(\left|x-4\right|+3x=5\) `(1)`
Thường hợp `1` : `x-4 >= 0<=> x >=0` thì phương trình `(1)` thở thành :
`x-4 = 5-3x`
`<=> x+3x=5+4`
`<=> 4x=9`
`<=> x= 9/4 (t//m)`
Trường hợp `2` : `x-4< 0<=> x<0` thì phương trình `(1)` trở thành :
`-(x-4) =5-3x`
`<=> -x +4=5-3x`
`<=> -x+3x=5-4`
`<=> 2x =1`
`<=>x=1/2 ( kt//m)`
Vậy phương trình có nghiệm `x=9/4`
\(ĐKXĐ:x\ne1;x\ne5\)
\(\frac{x^2-3x+5}{x^2-4x+5}-\frac{x^2-5x+5}{x^2-6x+5}=-\frac{1}{4}\)
\(\Leftrightarrow\frac{4\left(x^2-6x+5\right)\left(x^2-3x+5\right)-4\left(x^2-4x+5\right)\left(x^2-5x+5\right)+\left(x^2-4x+5\right)\left(x^2-6x+5\right)}{4\left(x^2-4x+5\right)\left(x^2-6x+5\right)}=0\)
Từ chỗ này xuống cậu tự phân tích tử thức ròi rút gọn nhé ! Vì hơi dài nên tớ sẽ k viết.
\(\Leftrightarrow-10x^3+26x^2-50x+x^4+25=0\)
\(\Leftrightarrow x^4-8x^3+5x^2-2x^3+16x^2-10x+5x^2-40x+25=0\)
\(\Leftrightarrow x^2\left(x^2-8x+5\right)-2x\left(x^2-8x+5\right)+5\left(x^2-8x+5\right)=0\)
\(\Leftrightarrow\left(x^2-8x+5\right)\left(x^2-2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-8x+5=0\left(tm\right)\\\left(x-1\right)^2+4=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{11}\\x=4-\sqrt{11}\end{cases}}\)
Vậy tập nghiệm của phương trình là :\(S=\left\{4+\sqrt{11};4-\sqrt{11}\right\}\)
\(ĐKXĐ:x\ne1;x\ne5\)
Đặt \(u=x^2+5\)
Phương trình trở thành\(\frac{u-3x}{u-4x}-\frac{u-5x}{u-6x}=-\frac{1}{4}\)
\(\Leftrightarrow\frac{\left(u-3x\right)\left(u-6x\right)-\left(u-4x\right)\left(u-5x\right)}{\left(u-4x\right) \left(u-6x\right)}=-\frac{1}{4}\)
\(\Leftrightarrow\frac{u^2-9ux+18x^2-u^2+9ux-20x^2}{u^2-10ux+24x^2}=\frac{-1}{4}\)
\(\Leftrightarrow\frac{-2x^2}{u^2-10ux+24x^2}=\frac{-1}{4}\)
\(\Leftrightarrow-u^2+10ux-24x^2=-8x^2\)
\(\Leftrightarrow-u^2+10ux-16x^2=0\)
\(\Delta=\left(10x\right)^2-4.\left(-1\right).\left(-16x^2\right)=36x^2,\sqrt{\Delta}=6x\)
\(\Rightarrow\orbr{\begin{cases}u=\frac{-10x+6x}{-2}=2x\\u=\frac{-10x-6x}{-2}=8x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5=2x\\x^2+5=8x\end{cases}}\)
+) \(x^2+5=2x\Leftrightarrow x^2-2x+5=0\)(1)
Mà \(x^2-2x+5=\left(x-1\right)^2+4>0\)nên (1) vô nghiệm
+) \(x^2+5=8x\Leftrightarrow x^2-8x+5=0\)
\(\Delta=8^2-4.5=44,\sqrt{\Delta}=\sqrt{44}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{8+\sqrt{44}}{2}=4+\sqrt{11}\\x=\frac{8-\sqrt{44}}{2}=4-\sqrt{11}\end{cases}}\)
Vậy tập nghiệm của phương trình\(S=\left\{4+\sqrt{11};4-\sqrt{11}\right\}\)
g.\(\dfrac{1-3x}{6}+x-1=\dfrac{x+2}{2}\)
\(\Leftrightarrow\dfrac{\left(1-3x\right)+6\left(x-1\right)}{6}=\dfrac{3\left(x+2\right)}{6}\)
\(\Leftrightarrow\left(1-3x\right)+6\left(x-1\right)=3\left(x+2\right)\)
\(\Leftrightarrow1-3x+6x-6=3x+6\)
\(\Leftrightarrow-5=6\left(vô.lí\right)\)
Vậy pt vô nghiệm
h.\(\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
\(\Leftrightarrow\dfrac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\dfrac{8\left(3x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-100-2\left(3x+2\right)=8\left(3x-1\right)\)
\(\Leftrightarrow30x+15-100-6x-4=24x-8\)
\(\Leftrightarrow-89=-8\left(vô.lí\right)\)
Vậy pt vô nghiệm
a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )
<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0
<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0
<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0
<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)
Vậy x = { \(\frac{-1}{3};-5\)}
b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0
<=> ( x + 5 )2 -4.x . (x + 5 ) = 0
<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0
<=> ( x + 5 ) . ( 5 - 3.x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{3};-5\right\}\)
c) (4.x - 5 )2 - 2. ( 16.x2 -25 ) = 0
<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0
<=> ( 4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0
<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0
<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0
<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)
d) ( 4.x + 3 )2 = 4. ( x2 - 2.x + 1 )
<=> 16.x2 + 24.x + 9 - 4.x2 + 8.x - 4 = 0
<=> 12.x2 + 32.x + 5 =0
<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0
<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
e) x2 -11.x + 28 = 0
<=> x2 -4.x - 7.x + 28 = 0
<=> ( x - 7 ) . ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)
Vậy x = { 4 ; 7 }
f ) 3.x.3 - 3.x2 - 6.x = 0
<=> 3.x. ( x2 -x - 2 ) = 0
<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\([x=0\) \([x=0\)
( Lưu ý :Lưu ý này không cần ghi vào vở : Chị nối 2 ý đó làm 1 nha cj ! )
Vậy x = { 2 ; -1 ; 0 }
\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{5;-2\right\}\)
\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)
Câu d xem lại đề
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
TL:
ĐKXĐ:x≠1;x≠5ĐKXĐ:x≠1;x≠5
x2−3x+5x2−4x+5−x2−5x+5x2−6x+5=−14x2−3x+5x2−4x+5−x2−5x+5x2−6x+5=−14
⇔4(x2−6x+5)(x2−3x+5)−4(x2−4x+5)(x2−5x+5)+(x2−4x+5)(x2−6x+5)4(x2−4x+5)(x2−6x+5)=0⇔4(x2−6x+5)(x2−3x+5)−4(x2−4x+5)(x2−5x+5)+(x2−4x+5)(x2−6x+5)4(x2−4x+5)(x2−6x+5)=0
Từ chỗ này xuống cậu tự phân tích tử thức ròi rút gọn nhé ! Vì hơi dài nên tớ sẽ k viết.
⇔−10x3+26x2−50x+x4+25=0⇔−10x3+26x2−50x+x4+25=0
⇔x4−8x3+5x2−2x3+16x2−10x+5x2−40x+25=0⇔x4−8x3+5x2−2x3+16x2−10x+5x2−40x+25=0
⇔x2(x2−8x+5)−2x(x2−8x+5)+5(x2−8x+5)=0
^HT^