K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

ta có đề bài <=> 

\(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

<=> \(\left|x-3\right|+\left|x+5\right|=8\)

<=>\(\left|3-x\right|+\left|x+5\right|=8\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|3-x\right|+\left|x+5\right|>=\left|3-x+x+5\right|=8\)

dấu = xảy ra <=> \(\left(3-x\right)\left(x+5\right)>=0\)

đến đây bạn tự giaỉ dấu = nhé

14 tháng 12 2018

DDK : \(x\ge1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

\(\Rightarrow x-1=3x-2+5x-2+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow x-1-3x+2-5x+2=2\sqrt{15x^2-3x-10x+2}\)

\(\Leftrightarrow3-7x=2\sqrt{15x^2-13x+2}\)

\(\Rightarrow9-42x+49x^2=4\left(15x^2-13x+2\right)\)

\(\Leftrightarrow9-42x+49x^2=60x^2-52x+8\)

\(\Leftrightarrow11x^2-10x-1=0\)

\(\Leftrightarrow11x^2-11x+x-1=0\)

\(\Leftrightarrow\left(11x+1\right)\left(x-1\right)=0\)

Giải nốt nha .

15 tháng 9 2020

\(\left(x^2-4x+3\right)\left(x^2-6x+8\right)=8\) 

\(\left(x^2-3x-x+3\right)\left(x^2-4x-2x+8\right)=8\)  

\(\left[x\left(x-3\right)-1\left(x-3\right)\right]\left[x\left(x-4\right)-2\left(x-4\right)\right]=8\)

\(\left(x-1\right)\left(x-3\right)\left(x-2\right)\left(x-4\right)=8\) 

\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=8\) 

\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)-8=0\)  

Đặt \(t=x^2-5x+4\) 

\(t\left(t+2\right)-8=0\) 

\(t^2+2t-8=0\) 

\(t^2+4t-2t-8=0\) 

\(t\left(t+4\right)-2\left(t+4\right)=0\) 

\(\left(t+4\right)\left(t-2\right)=0\) 

\(\orbr{\begin{cases}t+4=0\\t-2=0\end{cases}}\) 

\(\orbr{\begin{cases}t=-4\\t=2\end{cases}}\)  

\(\orbr{\begin{cases}x^2-5x+4=-4\\x^2-5x+4=2\end{cases}}\)  

\(\orbr{\begin{cases}x^2-5x+8=0\left(ptvn\right)\\x^2-5x+2=0\end{cases}}\) 

\(x^2-5x+2=0\) 

\(\orbr{\begin{cases}x=\frac{5+\sqrt{17}}{2}\\x=\frac{5-\sqrt{17}}{2}\end{cases}}\)

11 tháng 2 2016

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)

\(\Leftrightarrow4\left(x+1\right)^2\left(2x+1\right)\left(2x+3\right)=18.4\)

\(\Leftrightarrow\left(2x+2\right)^2\left(2x+1\right)\left(2x+3\right)=72\)

\(\Leftrightarrow\left(4x^2+8x+3+1\right)\left(4x^2+8x+3\right)-72=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right)^2+\left(4x^2+8x+3\right)-72=0\)

Đặt  y = 4x2+8x+3 ta được

\(y^2+y-72=0\)

\(\Leftrightarrow y^2-8y+9y-72=0\)

\(\Leftrightarrow\left(y-8\right)\left(y+9\right)=0\)

\(\Leftrightarrow y-8=0\Leftrightarrow y=8\)  hoặc  \(y+9=0\Leftrightarrow y=-9\)

Th1: \(y=8\Leftrightarrow4x^2+8x+3=8\)

                    \(\Leftrightarrow4x^2+8x-5=0\Leftrightarrow4x^2+10x-2x-5=0\Leftrightarrow2x\left(2x+5\right)-\left(2x+5\right)=0\)

                   \(\Leftrightarrow\left(2x+5\right)\left(2x-1\right)=0\)

              \(\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)   hoặc     \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Th2: \(y=-9\Leftrightarrow4x^2+8x+3=-9\Leftrightarrow4x^2+8x+12=0\Leftrightarrow4\left(x^2+2x+3\right)=0\)

       \(\Leftrightarrow x^2+2x+3=0\Leftrightarrow\left(x+1\right)^2+2=0\)

  Vì  \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+2\ge2\) mà ta có  \(\left(x+1\right)^2+2=0\) nên k có giá trị của x 

Vậy tập nghiệm của phương trình là   \(S=\left\{-\frac{5}{2};\frac{1}{2}\right\}\)

27 tháng 8 2017

\(\sqrt{x+5}=1+\sqrt{x}\)

ĐKXĐ : \(x\ge0\)

\(pt\Leftrightarrow x+5=\left(1+\sqrt{x}\right)^2\)

\(\Leftrightarrow x+5=x+2\sqrt{x}+1\)

\(\Leftrightarrow x+5-x-2\sqrt{x}-1=0\)

\(\Leftrightarrow-2\sqrt{x}+4=0\)

\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)(TMĐKXĐ)

Nhân cả 2 vế của pt với 4 ta đc 4x2+4y2-4x-4y=32

Suy ra (2x-1)2+(2y-1)2=34 mà 34=52+32

Nên (2x-1),(2y-1) thuộc tập hợp (5,3),(-5,-3),(-5,3),(5,-3) giải ra ta tìm đc x,y

4 tháng 4 2018

4( X*2 +Y*2 -x-y)= 4*8=32 
4x^2-4x+1+4y^2-4y+1=34 
(2x-1)^2+(2y-1)^2=34 
=> pt a^2+b^2=34 
=>1) l a l=3, b=l 5 l,2) l a l=5, b=l 3 l 
1) 2x-1=a=(+/-)3 => x=2, x=1 
2y-1=b=(+/-)5=> y=3, y=-2 
tuong tu 2)y=2, y=1,x=3, x=-2