Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có phải đề bài là ......... + \(\frac{7}{x^2+5}\)ko bạn???
Ta có: ĐKXĐ : x thuộc R.
\(\frac{4x^2+16}{x^2+6}=\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}\)
<=> \(\frac{4x^2+16}{x^2+6}-3=\left(\frac{3}{x^2+1}-1\right)+\left(\frac{5}{x^2+3}-1\right)+\left(\frac{7}{x^2+5}-1\right)\)
<=> \(\frac{x^2-2}{x^2+6}=\frac{2-x^2}{x^2+1}+\frac{2-x^2}{x^2+3}+\frac{2-x^2}{x^2+5}\)
<=> \(\frac{x^2-2}{x^2+6}-\frac{2-x^2}{x^2+1}-\frac{2-x^2}{x^2+3}-\frac{2-x^2}{x^2+5}=0\)
<=> ( x2 - 2 ) \(\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)\)= 0 ( vì nhân tử chung là x2 - 2 nên 3 hạng tử sau đổi dấu )
<=> x2 - 2 = 0. ( vì biểu thức trong ngoặc > 0 với mọi x thuộc R )
<=> \(x=\sqrt{2}\)hoặc \(x=-\sqrt{2}\)
Vậy ..........
Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
Tập xác định của phương trình
2
Rút gọn thừa số chung
3
Biệt thức
4
Biệt thức
5
Nghiệm
\(ĐKXĐ:x\ne-3;x\ne2;x\ne-1;x\ne\frac{1}{2}\)
Xét\(VT=\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}\)
\(=\frac{5\left(x+1\right)}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}-\frac{2\left(x-2\right)}{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(=\frac{5x+5-2x+4}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}\)
\(=\frac{3x+9}{\left(x+3\right)\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}\)
\(pt\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{3}{4x-2}\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=4x-2\)
\(\Leftrightarrow x^2-x-2=4x-2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)(tm)
Vậy tập nghiệm của phương trình là {0;5}
ĐKXĐ: \(x\ne-3,2,-1\)
\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4x+3}=\frac{3}{4x-2}\)
\(\Leftrightarrow\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{3}{2\left(x-2\right)}\)
\(\Leftrightarrow10\left(x+1\right)\left(2x-1\right)-4\left(x-2\right)\left(2x-1\right)=3\left(x-2\right)\left(x+3\right)\left(x+1\right)\)
\(\Leftrightarrow12x^2+30x-18=3x^2+6x^2-15x-18\)
\(\Leftrightarrow12x^2+30x=3x^3+6x^2-15\)
\(\Leftrightarrow12x^2+30x-3x^3-6x^2+15x=0\)
\(\Leftrightarrow6x^2+45x-3x^2=0\)
\(\Leftrightarrow3x\left(2x+15-x^2\right)=0\)
\(\Leftrightarrow-x\left(x^2-2x-15\right)=0\)
\(\Leftrightarrow-x\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-x=0\\x-5=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x=5\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
Vậy: tập nghiệm của phương trình là: S = {0, 5}
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x