K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

cot⁡ x = 1 ⇔ cot⁡ x = cot⁡ π/4 ⇔ x = π/4 + kπ, k ∈ Z

26 tháng 9 2019

Điều kiện Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

      tanx – 2.cotx + 1 = 0

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (Thỏa mãn điều kiện).

Vậy phương trình có tập nghiệm

{Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 + kπ; arctan(-2) + kπ} (k ∈ Z)

16 tháng 7 2017

cotx - cot2x = tanx + 1 (1)

Điều kiện: sinx ≠ 0 và cosx ≠ 0. Khi đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 8 2019

cot⁡ x = 0 ⇔ cot⁡ x = cot⁡ π/2 ⇔ x = π/2 + kπ, k ∈ Z

23 tháng 4 2017

Điều kiện của phương trình: sinx ≠ 0, cos ≠ 0, tan ≠ -1.

Biến đổi tương đương đã cho, ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Phương trình (2) vô nghiệm vì |sin2x + cos2x| ≥ √2.

Phương trình (1) có nghiệm 2x = π/2+kπ,k ∈ Z

⇒ x = π/4+ k π/2,k ∈ Z.

 

Giá trị x = π/4+ k π/2, k = 2n + 1,

với n ∈ Z bị loại do điều kiện tanx ≠ -1.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(cotx = 1\)nên phương trình \(cotx = 1\) có các nghiệm là \(x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).

Vậy tập nghiệm của phương trình là: \(S = \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} \right\}\).

\(\begin{array}{*{20}{l}}{b){\rm{ }}cot\left( {3x + 30^\circ } \right) = cot75^\circ }\\{ \Leftrightarrow \;3x + 30^\circ  = 75^\circ  + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = 45^\circ  + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}.}\\{ \Leftrightarrow \;x = 15^\circ  + k60^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}}\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \{ 15^\circ  + k60^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

9 tháng 10 2022

a) cos3x =  \(cos\left(\pi-x-\dfrac{\pi}{3}\right)\)

<=> cos3x = \(cos\left(\dfrac{2\pi}{3}-x\right)\)

<=> 3x = \(\dfrac{2\pi}{3}-x\) hoặc 3x = \(\dfrac{-2\pi}{3}+x\)

<=> 4x = \(\dfrac{2\pi}{3}+k2\pi\) hoặc 2x = \(\dfrac{-2\pi}{3}+k2\pi\)

<=> x = \(\dfrac{\pi}{6}+\dfrac{k\pi}{2}\) hoặc x = \(\dfrac{-\pi}{3}+k\pi\)

<=> x = \(\left\{\dfrac{\pi}{6}+\dfrac{k\pi}{2};\dfrac{-\pi}{3}+k\pi;k\in Z\right\}\)

b ) Điều kiện sinx\(\ne0;cosx\ne0\)

<=> sin2x\(\ne0\) <=> x \(\ne\dfrac{k\pi}{2}\);k\(\in Z\)

tanx + cotx =0

<=> tan2x + tanx =0

<=> tanx(tanx+1)=0

<=> tanx=0 hoặc tanx = -1

<=> x=\(k\pi\) (loại) hoặc x = \(\dfrac{-\pi}{4}+k\pi\)

Vậy x = \(\dfrac{-\pi}{4}+k\pi;k\in Z\)

 

NV
18 tháng 7 2021

ĐKXĐ: \(x\ne k\dfrac{\pi}{2}\)

\(tanx+\dfrac{1}{tanx}=2\)

\(\Rightarrow tan^2x+1=2tanx\)

\(\Leftrightarrow\left(tanx-1\right)^2=0\)

\(\Leftrightarrow tanx=1\)

\(\Rightarrow x=\dfrac{\pi}{4}+k\pi\) (thỏa mãn)

28 tháng 4 2017