Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3+\sqrt{2x-3}=x\)
=>\(\sqrt{2x-3}=x-3\)
=>x>=3 và 2x-3=(x-3)^2
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x>=3 và (x-2)(x-6)=0
=>x>=3 và \(x\in\left\{2;6\right\}\)
=>x=6
b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)
=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)
=>\(-\sqrt{x}-3=-4\)
=>\(-\sqrt{x}=-1\)
=>căn x=1
=>x=1(nhận)
c: \(\sqrt{2x+1}-x+1=0\)
=>\(\sqrt{2x+1}=x-1\)
=>x>=1 và (x-1)^2=2x+1
=>x>=1 và x^2-2x+1=2x+1
=>x>=1 và x^2-4x=0
=>x(x-4)=0 và x>=1
=>x=4
a) b) c) bạn bình phương 2 vế
d) pt <=>3-x=x+3+2.căn(x+2)
<=> -2x=2.căn (x+2)
<=>-x=căn (x+2) (x<=0)
<=> x^2=x+2
<=>x=-1 hoặc x=2
Xong bạn xét ĐKXĐ
pt <=> \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\)
=> \(3x+4-2\sqrt{\left(2x+1\right)\left(x+3\right)}=3x-2-2\sqrt{\left(x-1\right)\left(2x-1\right)}\)
=> \(3-\sqrt{\left(2x+1\right)\left(x+3\right)}=-\sqrt{\left(x-1\right)\left(2x-1\right)}\)
=> \(9+\left(2x+1\right)\left(x+3\right)-6\sqrt{\left(2x+1\right)\left(x+3\right)}=\left(x-1\right)\left(2x-1\right)\)
<=> \(2x^2+7x+12-6\sqrt{\left(x+3\right)\left(2x+1\right)}=2x^2-3x+1\)
<=> \(10x+11=6\sqrt{\left(x+3\right)\left(2x+1\right)}\)
=> \(\left(10x+11\right)^2=36\left(x+3\right)\left(2x+1\right)\)
<=> \(100x^2+220x+121=36\left(2x^2+7x+3\right)\)
<=> \(28x^2-32x+13=0\)
<=> \(196x^2-224x+91=0\)
<=> \(\left(14x-8\right)^2+27=0\) (*)
Có: \(\left(14x-8\right)^2+27\ge27>0\)
=> PT (*) VÔ NGHIỆM.
VẬY PT \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\) VÔ NGHIỆM.
đk x≥≥3
ta có √2x+1=√x+√x−32x+1=x+x−3
do cả hai vế lớn hơn nên cả bình phương cả 2 vế
pt<=> 2x+1=x+x-3+2√x(x−3)x(x−3)<=> 2=√x(x−3)x(x−3)
<=> 4=x^2-3x
<=>x^2-3x-4=0
<=> (x-4)(x+1)=0
<=> x=4(do x≥3≥3
Vậy S={4}
a) căn(2x+5) - căn(3-x) = x2 -5x + 8
Điều kiện : \(-\frac{5}{2}\Leftarrow x\Leftarrow3\)
căn(2x+5) - căn(3-x) = x^2-5x+8
\(\Leftrightarrow\)[căn(2x+5)-3]-[căn(3-x)-1]=x2 -5x+6
nhân liên hợp
\(\Leftrightarrow\)(2x+5-9) / [căn(2x+5)+3] -(3-x-1) / [căn (3-x)+1]=(x-2)(x-3)
\(\Leftrightarrow\)(2x-4) / [căn (2x+5)+3] -(2-x) / [ căn (3-x)+1]-(x-2)(x-3)=0
\(\Leftrightarrow\)(x-2).M=0
\(\Leftrightarrow\)x=2 hoặc M=0
M=2 / [căn(2x+5)+3]+1 / [căn(3-x)+1]-x+3
2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x
voi -5/2<=x<=3 <->3-x thuoc[0;11/2]
nen M>0
vay x=2
b/ 2+ căn(3-8x) = 6x + căn(4x-1)
dk[1/4;8/3]
6x-2+căn(4x-1)-căn(3-8x)=0
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(...
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x...
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x...
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0
2+4/[căn(4x-1)+căn(3-8x)>0
nen 3x-1=0
x=1/3
a) căn(2x+5) - căn(3-x) = x^2-5x+8
dkxd -5/2<=x<=3
căn(2x+5) - căn(3-x) = x^2-5x+8
<->[can(2x+5)-3]-[can(3-x)-1]=x^2-5x+6
nhan lien hop
<->(2x+5-9)/[can(2x+5)+3] -(3-x-1)/[can(3-x)+1]=(x-2)(x-3)
<->(2x-4)/[can(2x+5)+3] -(2-x)/[can(3-x)+1]-(x-2)(x-3)=0
<->(x-2).M=0
<->x=2 hoac M=0
M=2/[can(2x+5)+3]+1/[can(3-x)+1]-x+3
2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x
voi -5/2<=x<=3 <->3-x thuoc[0;11/2]
nen M>0
vay x=2
b/ 2+ căn(3-8x) = 6x + căn(4x-1)
dk[1/4;8/3]
6x-2+căn(4x-1)-căn(3-8x)=0
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(...
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x...
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x...
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0
2+4/[căn(4x-1)+căn(3-8x)>0
nen 3x-1=0
x=1/3
điều kiện xác định: \(5\le x\le1\)(vô lý)
suy ra phương trình vô nghiệm
Đặt: \(\sqrt{2x-1}=a;\sqrt{x-2}=b\Rightarrow\sqrt{x+1}=\sqrt{\left(2x-1\right)-\left(x-2\right)}=\sqrt{a^2-b^2}\)
\(pt\Leftrightarrow a+b=\sqrt{a^2-b^2}\)
\(\Leftrightarrow a^2+2ab+b^2=a^2-b^2\)
\(\Leftrightarrow2b^2+2ab=0\Leftrightarrow2b\left(a+b\right)=0\)
bình 2 vế
\(\sqrt{2x-5}=\sqrt{x-1}\)
\(\Leftrightarrow2x-5=x-1\Leftrightarrow x=4\)