K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

2x(8x-1)2(4x-1)= 9

<=> 2x(64x2-16x+1)(4x-1)=9

<=>(128x - 32x+ 2x)(4x-1)=9

<=>512x4 - 256x3 + 40x2  - 2x=9

<=>64x- 32x3 + 5x- 0,25x - 1,125=0

<=>64x3(x-0,5) + 5x(x-0,5) + 2,5x  -0,25x - 1,125 = 0

<=> (x-0,5)(64x3 + 5x - 2,25) = 0

<=> (x-0,5)(64x3  + 16x- 16x- 4x + 9x - 2,25)=0

<=>(x-0,5)[64x2 (x + 0,25 ) -16x(x + 0,25) + 9(x + 0,25) = 0

<=> (x-0,5)(x+0,25)(64x-16x +9) = 0  (vì 64x-16x +9 > 0)

<=>\(\orbr{\begin{cases}x-0,5=0\\x+0,25=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0,5\\x=-0,25\end{cases}}\)

Vậy phương trình có hai nghiệm là S={\(\frac{1}{2}\) ; \(\frac{-1}{4}\)}

8 tháng 3 2017

X= 10000000

8 tháng 3 2017

Ghi lời giải giùm mình được không?

5 tháng 4 2017

\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)

\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72\)(nhân hai vế với 8)

Đặt \(8x-1=y\). Khi đó, pt được viết lại:

\(\left(y+1\right)y^2\left(y-1\right)=72\)

\(\Leftrightarrow y^2\left(y^2-1\right)=72\)

\(\Leftrightarrow y^4-y^2-72=0\)

\(\Leftrightarrow y^4+3y^3-3y^3-9y^2+8y^2+24y-24y-72=0\)

\(\Leftrightarrow y^3\left(y+3\right)-3y^2\left(y+3\right)+8y\left(y+3\right)-24\left(y+3\right)=0\)

\(\Leftrightarrow\left(y+3\right)\left(y^3-3y^2+8y-24\right)=0\)

\(\Leftrightarrow\left(y+3\right)\left(y^2\left(y-3\right)+8\left(y-3\right)\right)=0\)

\(\Leftrightarrow\left(y+3\right)\left(y-3\right)\left(y^2+8\right)=0\)

Mà \(y^2+8\ge8>0\)

\(\Rightarrow\orbr{\begin{cases}y+3=0\\y-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-3\\y=3\end{cases}}}\)

TH1: \(y=-3\)

\(\Rightarrow8x-1=-3\)

\(\Leftrightarrow8x=-2\)

\(\Leftrightarrow x=\frac{-1}{4}\)

TH2: \(y=3\)

\(\Rightarrow8x-1=3\)

\(\Leftrightarrow8x=4\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy tập nghiệm của pt là S={\(\frac{-1}{4};\frac{1}{2}\)}

29 tháng 1 2019

 Nhows k cho mình nhá

29 tháng 1 2019

\(PT< =>8x\left(8x-1\right)^2\left(8x-2\right)=72\)

\(< =>8x\left(8x-2\right)\left(64x^2-16x+1\right)=72\)

\(< =>\left(64x^2-16x\right)\left(64x^2-16x+1\right)=72\)

Đặt \(64x^2-16x+\frac{1}{2}=t\)

\(PT< =>\left(t-\frac{1}{2}\right)\left(t+\frac{1}{2}\right)=72\)

\(< =>t^2=\frac{289}{4}\)

\(< =>\orbr{\begin{cases}t=\frac{17}{2}\\t=\frac{-17}{2}\end{cases}}\)

\(TH1:t=\frac{17}{2}\)

\(PT< =>64x^2-16x+\frac{1}{2}=\frac{17}{2}\)

\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{4}\end{cases}}\)

\(TH2:t=\frac{-17}{2}\)

\(PT< =>64x^2-16x+\frac{1}{2}=\frac{-17}{2}\)

\(< =>64x^2-16x+9=0\)

\(< =>\left(8x-1\right)^2+8=0\left(VL\right)\)

Vậy S={1/2;-1/4}