Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-3xy+3y^2=3y\)
Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:
\(k^2y^2-3ky^2+3y^2=3y\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).
Khi \(y=0\) \(\Rightarrow x=0\).
Khi \(k^2y-3ky+3y=3\)
\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)
Ta lập bảng giá trị:
\(y\) | 1 | 3 | -1 | -3 |
\(k^2-3k+3\) | 3 | 1 | -3 | -1 |
\(k\) | 0 hoặc 3 | 1 hoặc 2 | vô nghiệm | vô nghiệm |
\(x\) | 0 (loại) hoặc 3 (nhận) | 3 (nhận) hoặc 6 (nhận) |
Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)
b) \(x^2-2xy+5y^2=y+1\)
\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)
\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)
Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)
Thay x = -3, y = 31/5 vào vế trái của phương trình (2), ta được:
VT = -3.(-3) + 2.31/5 = 9 + 62/5 = 107/5 ≠ 22 = VP
Vậy (x; y) = (-3; 31/5 ) không phải là nghiệm của phương trình (2).
Hệ phương trình đã cho vô nghiệm.
Biện pháp tu từ được sử dụng trong câu "sương vô tình đậu trên mắt rưng rưng" là sự lặp lại âm tiết "rưng rưng". Tác dụng của biện pháp này là tạo ra hiệu ứng âm thanh đặc biệt, tăng cường tính hài hòa và nhấn mạnh sự mơ hồ, mờ ảo của cảnh tượng mà câu muốn diễn tả. Ngoài ra, biện pháp tu từ còn giúp tạo ra sự nhấn mạnh, tăng cường tính cảm xúc và sự chú ý của người đọc đối với câu. có đúng khum thì ko bít nữa nhớ tick ạ
\(6x+5y+18=2xy\\ \Leftrightarrow2xy-6x+15-5y=33\\ \Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\\ \Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Ta có:
\(2x-5\) | ±33 | ±1 | ±3 | ±11 |
\(y-3\) | ±1 | ±33 | ±11 | ±3 |
\(x\) | 19;-14 | 3;2 | 4;1 | 8;-3 |
\(y\) | 4;2 | 36;-30 | 14;-8 | 6;0 |
Vậy \(\left(x;y\right)=\left\{\left(19;4\right);\left(-14;2\right);\left(3;36\right);\left(2;-30\right);\left(4;14\right);\left(1;-8\right);\left(8;6\right);\left(-3;0\right)\right\}\)
Giải:
Ta có:
\(6x+5y+18=2xy\Leftrightarrow2xy-6x=5x-18\)
\(\Leftrightarrow2x\left(y-3\right)=5y+18\left(1\right).\)
Nếu \(y=3\Leftrightarrow\left(1\right)\) trở thành \(0=33\) (Vô lý)
Ta lại biến đổi \(\left(1\right)\Leftrightarrow2x=\frac{2y+18}{y-3}=\frac{5\left(y-3\right)+33}{y-3}=5+\frac{33}{y-3}\)
Do \(x\in Z^+\) nên \(2x\in Z\Rightarrow\left(y-3\right)\inƯ\left(33\right)\)
Xét các trường hợp ta tìm được:
\(\left(x;y\right)=\left(19;4\right),\left(8;6\right),\left(4;14\right),\left(3;36\right)\)
nghiệm nguyên dương nhé,mình đánh thiếu