Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng hằng đẳng thức ko được đành phải dùng delta thôi ạ :((
Viết lại thành pt bậc 2 đối với x:
\(x^2+2x\left(2-y\right)+\left(2y^2-3y-26\right)=0\) (1)
Để pt có nghiệm thì \(\Delta'=\left(2-y\right)^2-\left(2y^2-3y-26\right)\ge0\)
\(\Leftrightarrow-y^2-y+30\ge0\Leftrightarrow-6\le y\le5\)
Super ez :D Nhưng đúng hay ko là một chuyện khác ạ:)
Đưa về pt bậc 2 ẩn x
\(x^2+2y^2-2xy+4x-3y-26=0\)
\(\Leftrightarrow\)\(x^2 + (4-2y)x + 2y^2-3y-26=0\)
\(\Delta=b^2-4ac=\left(4-2y\right)^2-4\left(2y^2-3y-26\right)\)
\(=16-16y+4y^2-8y^2+12y+104\)
\(=-4y^2-4y+120\)
Để phương trình có nghiệm nguyên thì \(\Delta\ge0\)
\(\Leftrightarrow-4y^2-4y+120\ge0\)
\(\Leftrightarrow-y^2-y+30\ge0\)
\(\Leftrightarrow y^2+y-30\ge0\)
\(\Leftrightarrow\left(y+6\right)\left(y-5\right)\ge0\)
\(\Leftrightarrow-6\le x\le5\)
Thay các giá trị của x rồi tìm y
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
\(x^2+2xy+y^2+3y-4=0\)
\(\Rightarrow\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)
\(\Leftrightarrow-4\le y\le1\)
\(\left(x+y\right)^2+\left(y-\frac{3}{2}\right)^2=4\)
mà 4=0^2+2^2
=>\(\orbr{\begin{cases}\hept{\begin{cases}x+y=0\\y-\frac{3}{2}=2\end{cases}}\\\hept{\begin{cases}x+y=2\\y-\frac{3}{2}=0\end{cases}}\end{cases}}\)
=> giải nốt
Bài toán :
Lời giải:
Tập xác định của phương trình
Rút gọn thừa số chung
Giải phương trình
Nghiệm được xác định dưới dạng hàm ẩn
#
pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1)
để pt có nghiệm x nguyên thì delta phải là số chính phương
xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x
-nghĩ vậy chả biết có đúng không <(")
Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)
Coi phương trình trên có ẩn là x.
Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)
\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)
Thay vào từng giá trị nguyên của y để tìm x=)