K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

ta có: \(x-\frac{91}{y}=2\)

<=> \(xy-91=2y\) ( với \(y\ne0\))

<=>\(y\left(x-2\right)=91\)

đến đây tự giải đc rồi nha!

22 tháng 7 2017

Hướng dẫn làm bài:

a) Giải phương trình: x2 – x – 2 = 0

∆ = (-1)2 – 4.1.(-2) = 1 + 8 > 0

√∆ = √9 = 3

⇒ x1 = -1; x2 = 2

b) Vẽ đồ thị hàm số

- Hàm số y = x2

+ Bảng giá trị:

- Hàm số y = x + 2

+ Cho x = 0 ⇒ y = 2 được điểm A(0,2)

+ Cho x = -2 ⇒ y = 0 được điểm B(-2;0)

Đồ thị hàm số:

c) Ta có phương trình hoành độ giao điểm của hai đồ thị là:

x2=x+2⇔x2−x−2=0⇔{x1=−1x2=2x2=x+2⇔x2−x−2=0⇔{x1=−1x2=2 

Điều này chứng tỏ rằng đồ thị đường thẳng cắt đồ thị parapol tại hai điểm có hoành độ lần lượt là x = -1; x= 2. Hai giá trị này cũng chính là nghiệm của phương trình x2 - x - 2 = 0 ở câu a).


 

13 tháng 11 2016

b/ Tọa độ điểm A

\(\hept{\begin{cases}y=-x+1\\y=x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

=> A(0, 1)

Tọa độ điểm B

\(\hept{\begin{cases}y=-x+1\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

=> B(2, - 1)

Tọa độ điểm C

\(\hept{\begin{cases}y=x+1\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)

=> C(-2, -1)

c/ Ta có vecto AB = (2, - 2) => AB = \(2\sqrt{2}\)

Vecto BC = (- 4, 0) => BC = 4

Vecto CA = (- 2, - 2) => CA = \(2\sqrt{2}\)

Từ đây ta có CA = AB

BC2 - AB2 - CA2 = 16 - 8 - 8 = 0

=> ∆ABC vuông cân tại A

17 tháng 10 2020

Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)

Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)

\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)

\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)

\(\Leftrightarrow1\ge xyz>0\)

Vì x,y,z nguyên 

=> xyz=1

Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)

Cre: @tpokemont

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn

TL

XY=60

Học tốt

Sai mik sorry

12 tháng 11 2021

xem có sai đề ko

23 tháng 6 2019

Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)

\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)

do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))

\(\Rightarrow x=\frac{k^2-2}{4}\)

do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)

=> ko tồn tại cặp số nguyên dương x,y tmđkđb