K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

Bài 2:

a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)

b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)

c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)

d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)

f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)

g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)

i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)

 

a: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=\left(x+1\right)\left(3x-10\right)\)

b: \(x^2+6x+9-4y^2\)

\(=\left(x+3\right)^2-4y^2\)

\(=\left(x+3-2y\right)\left(x+3+2y\right)\)

c: \(x^2-2xy+y^2-5x+5y\)

\(=\left(x-y\right)^2-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-5\right)\)

1 tháng 1

1)

\(\dfrac{x-1}{2014}+\dfrac{x-2}{2013}+\dfrac{x-3}{2012}+...+\dfrac{x-2014}{1}=2014\)

\(\Leftrightarrow\left(\dfrac{x-1}{2014}-1\right)+\left(\dfrac{x-2}{2013}-1\right)+...+\left(\dfrac{x-2014}{1}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-2015}{2014}+\dfrac{x-2015}{2013}+...+\dfrac{x-2015}{1}=0\)

\(\Leftrightarrow\left(x-2025\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1}\right)=0\)

\(\Leftrightarrow x=2015\)

Vậy \(S=\left\{2015\right\}\)

 

18 tháng 2 2020

86 vì ta học lớp 9

18 tháng 2 2020

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

26 tháng 3 2018

Do a+b+c= 0

<=> a+b= -c 

=> (a+b)2= c2 

Tương tự: (c+a)2= b2, (c+b)2= a2   

Ta có: \(A=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)

\(=\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(c+a\right)^2}+\frac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}\)

\(=\frac{a+b+c}{-2abc}=0\)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
25 tháng 8 2023

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

5 tháng 1 2018

pt <=> x^2+x+1-(2xy+y) = 0

<=> (x^2+1/2.x)+(1/2.x+1/4)-y.(2x+1)+3/4=0

<=> 1/2.x.(2x+1)+1/4.(2x+1)-y.(2x+1) = -3/4

<=> (2x+1).(1/2.x+1/4-y) = -3/4

<=> (2x+1).(2x+1-4y) = -3

Đến đó bạn tự giải nha ( dùng ước bội )

Tk mk nha

5 tháng 1 2018

sorry tớ mới lơp 7

25 tháng 10 2021

\(a+b+c=abc\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=1\Leftrightarrow\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=2\)

Mà \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\\ \Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\\ \Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)