Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+xy=x^2+y^2\)
⇔ \(2xy+2x+2y=2x^2+2y^2\)
⇔ \(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)
⇔ \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
⇔
⇔
Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).
xét y=0=>x=0. xét y=-1 =>x=0. Xét y=1=>x^2=6(không có nghiệm nguyên)
Xét y thuộc nhóm các số nguyên còn lại. Ta thấy y,y+1,2y+1 là 3 số nguyên tố cùng nhau( bạn tự cm nha)
=> y=a^2;y+1=b^2;2y+1=c^2=>(b-a)(a+b)=1(*);(c-a)(c+a)=b^2(=y+1)
(*)=>b-a=a+b=1 hay b-a=a+b=-1
=>a=0;b=1 hay b=-1; a=0=> y=0 ( vô lí)
xét y=0=>x=0. xét y=-1 =>x=0. Xét y=1=>x^2=6(không có nghiệm nguyên)
Xét y thuộc nhóm các số nguyên còn lại.
Ta thấy y,y+1,2y+1 là 3 số nguyên tố cùng nhau( bạn tự cm nha)
=> y=a^2;y+1=b^2;2y+1=c^2
=>(b-a)(a+b)=1(*);(c-a)(c+a)=b^2(=y+1) (*)
=>b-a=a+b=1 hay b-a=a+b=-1
=>a=0;b=1 hay b=-1; a=0=> y=0 ( vô lí)
a, Cách 1. Đặt 1 y + 1 = u ta được 3 x - 2 u = 1 5 x + 2 u = 3
Giải ra ta được x = 1 2 ; u = 1 4
Từ đó tìm được y = 3
Cách 2. Cộng vế với vế hai phương trình, ta được 8x = 4
Từ đó tìm được x = 1 2 và y = 3
b, Vì x1x2 = -m2 - 1 < 0 "m nên phương trình đã cho luôn có hai nghiệm phân biệt và trái dấu.
Cách 1. Giả sử x 1 < 0 < x 2
Từ giả thiết thu được – x 1 + x 2 = 2 2
Biến đổi thành x 1 + x 2 2 - 4 x 1 x 2 = 8
Áp dụng định lý Vi-ét, tìm được m = 1 hoặc m = - 3 5
Cách 2. Bình phương hai vế của giả thiết và biến đổi về dạng
x 1 + x 2 2 - 2 x 1 x 2 + 2 x 1 x 2 = 8
=> m - 1 2 + 4 m 2 + 1 = 8
Do x 1 x 2 = - x 1 x 2
Áp dụng hệ thức Vi-ét, ta cũng tìm được m = 1 hoặc m = - 3 5
x 2 − 2 y ( x − y ) = 2 ( x + 1 ) < = > x 2 − 2 ( y + 1 ) x + 2 ( y 2 − 1 ) = 0 ( 1 )
Để phương trình (1) có nghiệm nguyên x thì D' theo y phải là số chính phương
+ Nếu Δ ' = 4 = > ( y − 1 ) 2 = 0 < = > y = 1 thay vào phương trình (1) ta có :
x 2 − 4 x = 0 < = > x ( 2 − 4 ) < = > x = 0 x − 4
+ Nếu Δ ' = 1 = > ( y − 1 ) 2 = 3 < = > y ∉ Z .
+ Nếu Δ ' = 0 = > ( y − 1 ) 2 = 4 < = > y = 3 y = − 1
+ Với y = 3 thay vào phương trình (1) ta có: x 2 − 8 x + 16 = 0 < = > ( x − 4 ) 2 = 0 < = > x = 4
+ Với y = -1 thay vào phương trình (1) ta có: x 2 = 0 < = > x = 0
Vậy phương trình (1) có 4 nghiệm nguyên ( x ; y ) ∈ {(0;1);(4;1);(4;3);(0;-1)}
\(a,x^2-4xy+5y^2=169\\ \Leftrightarrow\left(x-2y\right)^2+y^2=169\\ Vìx,y\in Znên:\\ \left[{}\begin{matrix}\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=169\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=169\\y^2=0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=25\\y^2=144\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=144\\y^2=25\end{matrix}\right.\end{matrix}\right.\\ Giảira\)