Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)
\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)
Bảng giá trị:
x+y-2 | -5 | -1 | 1 | 5 |
x+3y | -1 | -5 | 5 | 1 |
x | -4 | 4 | 2 | 10 |
y | 1 | -3 | 1 | -3 |
Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)
<=> 2x(4y+2)=2(9-3y)
=> 4x=\(-\frac{6y-18}{2y+1}=-\frac{6y+3-21}{2y+1}=-3+\frac{21}{2y+1}\)
Để x nguyên thì 4x nguyên, hay 21 phải chia hết cho 2y+1 => 2y+1={-21; -7; -3; -1; 1; 3; 7; 21}
Do x nguyên dương nên ta chỉ chọn được kết quả: 2y+1={3; 7} => y={1; 3}
+/ y=1=> x=1; y=3 => x=0
Các cặp x, y thỏa mãn là: {1; 1}; {0; 3}
\(x^2-6x+y^2+10y=24\)
\(\Leftrightarrow x^2-6x+9+y^2+10x+25=58\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)
\(\Leftrightarrow\left(x-3\right)^2\le58\Leftrightarrow\left(x-3\right)^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
Dễ nhận thấy chỉ có tổng của 49 và: 9; 9 và 49 thỏa mãn (vì các số trên là số chính phương
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}\left(x-3\right)^2=49\Leftrightarrow x-3=7\Leftrightarrow x=10\\\left(y+5\right)^2=9\Leftrightarrow y+5=3\Leftrightarrow y=-2\end{cases}}\\\end{cases}}\)<=> (x-3)^2+(y+5)^2=49+9=9+49
+) (x-3)^2+(y+5)^2=49+9
=> x-3=7=>x=10 và: y+5=3=>y=-2
+) (x-3)^2+(y+5)^2=9+49
=> (x-3)=3=>x=6 và y+5=7=>y=2
Vậy có 2 cặp (x,y)={(6;2);(10;-2)}
thỏa mãn điều kiện
Ta có : \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)
Mà \(\left(x-2y\right)^2\ge0\forall x:y\)
\(\left(y-4\right)^2\ge0\forall y\)
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(8;4\right)\)
\(2xy+6x-y=2020\)
\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=2017\)
\(\Leftrightarrow\left(2x-1\right)\left(y+3\right)=2017=2017.1=1.2017\)
\(=\left(-2017\right).\left(-1\right)=\left(-1\right).\left(-2017\right)\)
Lập bảng:
\(2x-1\) | \(2017\) | \(1\) | \(-1\) | \(-2017\) |
\(y+3\) | \(1\) | \(2017\) | \(-2017\) | \(-1\) |
\(x\) | \(1009\) | \(1\) | \(0\) | \(-1008\) |
\(y\) | \(-2\) | \(2014\) | \(-2020\) | \(-4\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(1009;-2\right);\left(1;2014\right);\left(0;-2020\right);\left(-1008;-4\right)\)
phương trình ban đầu ⇔(4x−1)y=182−6x⇔(4x−1)y=182−6x
Vì x nguyên nên x≠14⇒y=182−6x4x−1⇒2y=364−12x4x−1=−3+3614x−1x≠14⇒y=182−6x4x−1⇒2y=364−12x4x−1=−3+3614x−1
y nhận giá trị nguyên => 2y cũng nhận giá trị nguyên => 2y nguyên <=> (4x-1) là các ước của 361
Lập bảng xét ước
Rồi thử lại
Done ^^