Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> \(16x^2+32xy+12y^2+8x+4y+8=0\)
<=> \(\left(4x+4y+1\right)^2-4y^2-4y-1+8=0\)
<=> \(\left(4x+4y+1\right)^2-\left(2y+1\right)^2=-8\)
<=> \(\left(4x+4y+1-2y-1\right)\left(4x+4y+1+2y+1\right)=-8\)
<=> \(\left(4x+2y\right)\left(4x+6y+2\right)=-8\)
<=> \(\left(2x+y\right)\left(2x+3y+1\right)=-2\)
=> Là ước của 2 \(\in\left\{1;2;-1;-2\right\}\)
ĐẾN ĐOẠN NÀY BẠN TÌM NỐT x; y là xong nha !!!!!
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)