K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

Điều kiện: \(\begin{align} \begin{cases} x&>0\\ 10-x&>0 \end{cases} \end{align}\) <=> 0 < x <10

phương trình đã cho tương đương: log4[x(10 - x)] = 2

                                                           <=> x(10 - x)= 42

                                                            <=> -x2+10x = 16

                                                             <=> x2-10x+16=0

                                                             <=> x = 2 hoặc x = 8

So điều kiện suy ra phương trình có nghiệm: x =2 hoặc x=8

NV
21 tháng 4 2020

ĐKXĐ: \(x>1\)

\(\Leftrightarrow\frac{1}{2}log_2\left(log_2x\right)+log_2\left(\frac{1}{2}log_2x\right)\ge2\)

\(\Leftrightarrow log_2\left(\frac{1}{2}log_2x.\sqrt{log_2x}\right)\ge2\)

\(\Leftrightarrow\frac{1}{2}\sqrt{log_2^3x}\ge4\Leftrightarrow\sqrt{log^3_2x}\ge8\)

\(\Leftrightarrow log_2^3x\ge64\Leftrightarrow log_2x\ge4\)

\(\Rightarrow x\ge16\)

29 tháng 3 2016

Điều kiện x>0. Nhận thấy x=2 là nghiệm. 

Nếu x>2 thì

\(\frac{x}{2}>\frac{x+2}{4}>1\)\(\frac{x+1}{3}>\frac{x+3}{5}>1\)

Suy ra 

\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)

\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)

Suy ra vế trái < vế phải, phương trình vô nghiệm.

Đáp số x=2

28 tháng 3 2016

d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :

\(\log_2x+\log_3x+\log_4x=\log_{20}x\)

\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)

\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)

\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)

Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)

Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)

Vậy nghiệm duy nhất của phương trình là \(x=1\)

28 tháng 3 2016

c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :

\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\log_5x=1\)

\(\Leftrightarrow x=5^1=5\) thỏa mãn

Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)

28 tháng 3 2016

d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1

Phương trình đã cho tương đương với :

\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)

\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)

Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :

\(t^2-4t-5=0\) hay t=-1 V t=5

Do \(t\ge0\) nên t=5

\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn

Vậy \(x=\pm2^{50}\) là nghiệm của phương trình

28 tháng 3 2016

c) Điều kiện x>0. Phương trình đã cho tương đương với :

\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)

\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)

\(\Leftrightarrow8lg^2x-6lgx-5=0\)

Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành

\(8t^2-6t-5=0\)  hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)

Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)

Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)

Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)

 
15 tháng 4 2016

-log2x2_  log2x2- 20=0

↔ pt này vô ng bạn ơi!!! xem lại đầu bài.

18 tháng 4 2016

Bài này phương trình có tận 4 nghiệm chứ không phải vô nghiệm đâu bạn Đỗ đại học nhé

Điều kiện \(x\ne0\)

Ta có từ phương trình ban đầu cho \(\Leftrightarrow4\log_2^2\left|x\right|-2\log_2\left|x\right|-20=0\)

                                                     \(\Leftrightarrow2\log_2^2\left|x\right|-\log_2\left|x\right|-10=0\)

Đặt \(t=\log_2\left|x\right|\) ta được phương trình \(2t^2-t-10=0\Leftrightarrow\begin{cases}t=-2\\t=\frac{5}{2}\end{cases}\)

Với \(t=2\Rightarrow\log_2\left|x\right|=-2\Leftrightarrow\left|x\right|=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{4}\)

Với \(t=\frac{5}{2}\Rightarrow\log_2\left|x\right|=\frac{5}{2}\Leftrightarrow\left|x\right|=\sqrt{32}\Leftrightarrow x=\pm\sqrt{32}\)

Vậy phương trình có 4 nghiệm : \(x=\frac{1}{4};x=-\frac{1}{4};x=\sqrt{32};x=-\sqrt{32}\)