K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Ta có: 

\(\frac{x}{\left(a-b\right)\left(a-c\right)}+\frac{x}{\left(b-a\right)\left(b-c\right)}+\frac{x}{\left(c-a\right)\left(c-b\right)}=2\)

\(\Leftrightarrow x\left(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\right)=2\)

\(\Leftrightarrow0x=2\)

Vậy PT vô nghiệm

1 tháng 9 2017

không hổ danh là anh ali ( bài này tui bó tay T_T )

14 tháng 11 2019

Ta có

\(B=\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(a-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(c-a\right)}-\frac{\left(x-c\right)\left(x-a\right)}{\left(a-c\right)\left(a-b\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(a-c\right)\left(c-b\right)}\)

\(=\frac{\left(x-b\right)\left(x-c\right)-\left(x-c\right)\left(x-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)-\left(x-b\right)\left(x-a\right)}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{\left(x-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-a\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)}\).

\(=\frac{x-c}{a-c}-\frac{x-a}{a-c}=\frac{x-c-x+a}{a-c}\)

\(=1\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2020

Lời giải:

\(\text{VT}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}=\left(\frac{b}{b+c}-\frac{b}{a+b}\right)+\left(\frac{c}{c+a}-\frac{c}{c+b}\right)+\left(\frac{a}{a+b}-\frac{a}{a+c}\right)\)

\(=\frac{b(a-c)}{(b+c)(a+b)}+\frac{c(b-a)}{(c+a)(c+b)}+\frac{a(c-b)}{(a+b)(a+c)}\)

\(=\frac{b(a-c)(a+c)+c(b-a)(b+a)+a(c-b)(c+b)}{(a+b)(b+c)(c+a)}=\frac{b(a^2-c^2)+c(b^2-a^2)+a(c^2-b^2)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{(a+b)(b+c)(c+a)}(*)\)

Và:

\(\text{VP}=\frac{(b^2-c^2)(b+c)+(c^2-a^2)(c+a)+(a^2-b^2)(a+b)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{(a+b)(b+c)(c+a)}(**)\)

Từ $(*); (**)\Rightarrow $ đpcm

4 tháng 10 2018

\(\frac{(b-c)(1+a)^2}{x+a^2}+\frac{(c-a)(1+b)^2}{x+b^2}+\frac{(a-b) (1+c)^2}{x+c^2}=0\)

\(\Leftrightarrow \sum (b-c)(1+a)^2(x+b^2)(x+c^2)=0\)

\(\Leftrightarrow (a-b)(b-c)(c-a)(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca)=0\)

\(\Leftrightarrow x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)

Xét phương trình  \(x^2+(-2a-ca-ba-cb-2c-2b-1)x+ba+2acb+cb+ca=0\)

Ta thấy \(\Delta=(2a+2b+2c+ab+bc+ca-1)^2+8(a+b+c-abc)\)

Nếu \(\Delta <0\) thì phương trình vô nghiệm

Nếu \(\Delta =0\) thì phương trình có nghiệm kép

Nếu \(\Delta >0\) thì phương trình có hai nghiệm 

12 tháng 2 2017

Quy đồng lên, lấy MTC là (a-b)(b-c)(a-c)

13 tháng 11 2018

Với điều kiện như đề bài

Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)

Tướng tự: 

\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)

\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)

Em nhớ làm tiếp nhé!

13 tháng 11 2018

làm tiếp kiểu gì ạ